Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
Арифметический квадратный корень из некоторого числа - это неотрицательное число, квадрат которого равен некоторому числу.
Обозначается: √а. Т.е. √а = b, причем b ≥ 0 и b² = a.
Например, √4 = 2, т.к. 2² = 2 и 2 ≥ 0.
Тогда:
√а = 3, значит, а = 9, т.к. 3² = 9;
√а = 10, значит, а = 100, т.к. 10² = 100;
√а = 0, значит, а = 0, т.к. 0² = 0;
√а = 0,8, значит, а = 0,64, т.к. 0,8² = 0,64;
√а = 1/4, значит, а = 1/16, т.к. (1/4)² = 1/16;
√а = 0,1, значит, а = 0,01, т.к. 0,1² = 0,01;
√а = 1 целая 2/3 = 5/3, значит, а = 25/9 = 2 целых 7/9, т.к. (5/3)² = 25/9;
√а = 1,1, значит, а = 1,21, т.к. 1,1² = 1,21.