1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1
Объяснение:
а) х+у=2
х²+у²=100
х=2–у
х²+у²=100
Подставим значение х во второе уравнение:
(2–у)²+у²=100
4–4у+у²+у²=100
2у²–4у–100+4=0
2у²–4у–96=0 |÷2
у²–2у–48=0
D=b²–4ac=4–4(–48)=4+192=196
y1= (–b+√D)/2=(2+14)/2=16/2=8
y2=(–b–√D)/2=(2–14)/2= –12/2= –6
Теперь подставим оба значения у в первое уравнение: х1=2–у=2–8= –6
х2=2–у=2–(–6)=2+6=8
ОТВЕТ: х1= –6; х2=8; у1=8; у2= –6
б) х+у= –5
х²–у²=5
х= –5–у
х²–у²=5
Подставим значение х во второе уравнение:
(–5–у)²–у²=5
–(5+у)²–у²=5
–(25+10у+у²)–у²=5
–25–10у–у²–у²–5=0
–2у²–10у–30=0 |÷(–2)
у²+5у+15=0
Д=25–4×.15=25–60= –35
Решений нет: отрицательный дискриминант
в) у–3х=0
х²+у²=40
у=3х
х²+у²=40
Подставим значение у во второе уравнение:
х²+(3х)²=40
х²+9х²=40
10х²=40
х²=40÷10=4
х=√4=±2
Теперь подставим оба значение х в первое уравнение:
у1=3х=3×2=6
у2=3х=3×(–2)= –6
ОТВЕТ: х1=2; х2= –2; у1=6; у2= –6
г) 2х+у=0
ху=2
у= –2х
ху=2
Подставим значение у во второе уравнение:
х×(–2х)=2
–2х²=2
х²=2÷(–2)= –1
х²≠ –1 (решений нет)
14(p-1)×(p+1)
Объяснение:
14p²-14=14(p²-1)=14(p-1)(p+1)