Раскрываем знак модуля: 1) если х≥0, то | x| = x если y≥0, то | y| = y Уравнение принимает вид : (x+y-1)(x+y+1)=0 х+у-1=0 или х+у+1=0 у=-х+1 или у=-х-1 В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x если y≥0, то | y| = y Уравнение принимает вид : (-x+y-1)(x+y+1)=0 -х+у-1=0 или х+у+1=0 у=х+1 или у=-х-1 Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x если y<0, то | y| =- y Уравнение принимает вид : (-x+y-1)(x-y+1)=0 -х+у-1=0 или х-у+1=0 у=х+1 или у=х+1 В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x если y<0, то | y| =- y Уравнение принимает вид : (x+y-1)(x-y+1)=0 х+у-1=0 или х-у+1=0 у=-х+1 или у=х+1 В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти. Тогда получится нужный график, см. рисунок
Т.к. а- натуральное число, то а=0 мы рассматривать не будем. Представим,что у нас неполное квадратное уравнение: 1) пусть a^2-25=0 ( нет свободного члена). a1=-5; a2=5 тогда уравнение будет выглядеть так: x^2-(2a-4)x=0 x(x-2a+4)=0 - как видим, уравнение имеет два корня a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю 2a-4=0; a=2 Уравнение примет вид: x^2+2^2-25=0 x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0. D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0; -16a>=-116; a<=7,25 Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.
1) если х≥0, то | x| = x
если y≥0, то | y| = y
Уравнение принимает вид :
(x+y-1)(x+y+1)=0
х+у-1=0 или х+у+1=0
у=-х+1 или у=-х-1
В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x
если y≥0, то | y| = y
Уравнение принимает вид :
(-x+y-1)(x+y+1)=0
-х+у-1=0 или х+у+1=0
у=х+1 или у=-х-1
Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x
если y<0, то | y| =- y
Уравнение принимает вид :
(-x+y-1)(x-y+1)=0
-х+у-1=0 или х-у+1=0
у=х+1 или у=х+1
В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x
если y<0, то | y| =- y
Уравнение принимает вид :
(x+y-1)(x-y+1)=0
х+у-1=0 или х-у+1=0
у=-х+1 или у=х+1
В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти.
Тогда получится нужный график, см. рисунок