4x²-3x=x(4x-3)
x(4x-3)=0
x=0 4x=3
x=3/4
9x2 + 6x + 1 = 0
D = b2 - 4ac
D = 36 - 36 = 0
x = - b/2a
x = - 6/18 = - 1/3
ответ: x = - 1/3
x2 + 4x + 3 = 0
D = b2 - 4ac
D = 16 - 12 = 4 = 2^2
x1,2 = -b ± √D/2a
x1 = -4 + 2/2 = - 2/2 = -1
x2 = -4 - 2/2 = - 6/2= -3
ответ: x1 = -1; x2 = -3
5x2 - x + 1 = 0
D = b2 - 4ac
D = 1 - 20 = -19 < 0
ответ: нет решений
Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
1) 4x²-3x 2 корня х=0 и х=3/4
2) 9x²+6x+1 Дискрименант равен 0, тогда уравнение имеет 1 корень
3) x²+4x+3 2 корня
4) 5x²-x+1 Дискрименант меньше 0, следовательно квадратный трёхчлен не имеет корней