Объяснение:
1
\begin{gathered}1 - 8 \sin(2 \beta ) \times \cos( 2\beta ) = 1 - 4 \times 2 \sin( 2\beta ) \cos( 2\beta ) = \\ = 1 - 4 \sin( 4\beta ) \end{gathered}
1−8sin(2β)×cos(2β)=1−4×2sin(2β)cos(2β)=
=1−4sin(4β)
2
\begin{gathered}tg \beta (1 + \cos(2 \beta ) - \sin( 2\beta ) = \\ = tg \beta \times (1 + { \cos }^{2} (\beta) - { \sin}^{2}( \beta )) - \sin( 2\beta ) = \\ = tg \beta \times 2 { \cos }^{2} (\beta ) - \sin( 2\beta ) = \\ = 2 \sin( \beta ) \cos( \beta ) - 2 \sin( \beta ) \cos( \beta ) = 0\end{gathered}
tgβ(1+cos(2β)−sin(2β)=
=tgβ×(1+cos
2
(β)−sin
2
(β))−sin(2β)=
=tgβ×2cos
2
(β)−sin(2β)=
=2sin(β)cos(β)−2sin(β)cos(β)=0
3
\begin{gathered} \frac{2 \sin( \beta ) - \sin( 2\beta ) }{ 2\sin( \beta ) + \sin( 2\beta ) } = \\ = \frac{2 \sin( \beta ) - 2 \sin( \beta ) \cos( \beta ) }{ 2\sin( \beta ) + 2 \sin( \beta ) \cos( \beta ) } = \\ = \frac{2 \sin( \beta )(1 - \cos( \beta )) }{ 2\sin( \beta ) (1 + \cos( \beta )) } = \frac{1 - \cos( \beta ) }{1 + \cos( \beta ) } \end{gathered}
2sin(β)+sin(2β)
2sin(β)−sin(2β)
=
=
2sin(β)+2sin(β)cos(β)
2sin(β)−2sin(β)cos(β)
=
=
2sin(β)(1+cos(β))
2sin(β)(1−cos(β))
=
1+cos(β)
1−cos(β)
4
\begin{gathered} \frac{ctg(45 - \beta )}{1 - {ctg}^{2}(45 - \beta ) } = - \frac{ctg(45 - \beta )}{ {ctg}^{2} (45 - \beta ) - 1} = \\ = - \frac{2ctg(45 - \ \beta )}{2( {ctg}^{2}(45 - \beta ) - 1) } = - \frac{1}{2ctg(45 - \beta )} \end{gathered}
1−ctg
2
(45−β)
ctg(45−β)
=−
ctg
2
(45−β)−1
ctg(45−β)
=
=−
2(ctg
2
(45−β)−1)
2ctg(45− β)
=−
2ctg(45−β)
1
1) Так как существует точка (1;1), то а+b+с=1. Так как при X=2, будет то же значение, то 4a+2b+c=1. Теперь получаем два уравнения. Если из второго вычесть первое, то получим 3a+b=0. b=-3a. Подставив в первое уравнение, получаем, что a-3a+c=1. с=1+2a. Так как в точке x=(-b)/(2a) - вершина параболы, то x=-(-3*a)/(2a). x=3a/(2a). x=1,5. Это парабола, у которой ветви направлены вниз, так как существует наибольшее значение. Это значение достигается на вершине параболы при x=1,5 и y=3. Подставив эти значения в квадратное уравнение, получаем 3=2,25a+1,5b+c. Заменим b и c через a. 3=2,25a+1,5*(-3a)+1+2a. Упрощаем и находим a. 3=2,25a-4,5a+1+2a. 2=2,25a-4,5a+2a. 2=-0,25a. a=-8. Это значение должно быть отрицательным, так как ветви параболы напрвлены вниз. b=-3*a. b=-3*(-8). b=24. c=1+2*(-8). c=-15.
2) Двузначное число можно представить в виде 10*a+b, где a и b будут однозначными цифрами в позиционной системе счисления. Так происходит деление на сумму этих чисел, то это выражается в виде (10*a+b)=7*(a+b)+6. Деление на произведение (10*a+b)=3*(a*b)+11. Из первого уравнения получаем 10*a+b=7*a+7*b+6. 3*a-6*b=6. Сокращаем обе части на 3. Получаем a-2*b=2, a=2+2b. Упростим тепрь второе уравнение 10a+b=3ab+11. Подставим значение а из полученного во второе уравнение. 10(2+2b)+b=3(2+2b)b+11. 20+21b=6b+6b^2+11. Придется решать квадратное уравнение. 6b^2-15b-9=0. D=15^2-4*6*(-9). D=225+216. D=441. D=21^2. b=(15+21)/2/6. Здесь вариант с минусом убирается так как b - только положительное число. b=36/2/6. b=3. Значит a= 2+2b. a=2+6. a=8. Исходное число будет равно 83.
(t-p)²=t²-2tp+p²
(5x+k)²=10x²+2xk+k²
(n-4)²=n²-8n+8
Объяснение: