ответ: a∈( 0; 1/4)
Объяснение:
ax^2+x-3 = 0
Обязательное условие: уравнение имеет 2 корня
D=1+12a>0 → a > -1/12
a = 0 нам так же не подходит, ибо данное уравнение становится линейным.
Таким образом: a∈(-1/12;0) ∪ ( 0; ∞)
По условию ясно, что число 2 лежит между корнями параболы.
Из графических представлений ясно, что при a>0 между корнями лежит отрицательная часть параболы f(x) = ax^2+x-3, а при a<0 между корнями лежит положительная часть параболы. Данное условие эквивалентно следующему неравенству:
a*f(2)< 0
a(4a-1) < 0
a∈(0; 1/4)
Пересекая с условием: a∈(-1/12;0) ∪ ( 0; ∞), получаем ответ:
a∈(0; 1/4)
Обозначим кольцевой маршрут по времени прохождения автобусов за 1(единицу) тогда интервал ожидания при курсировании 25-ти автобусов составит:
1 : 25=1/25 (времени), равный 100%
При увеличении на маршрут 6-ти автобусов, при общем их количестве:
25+6=31 (автобусов), интервал ожидания при курсировании составит:
1 : 31=1/31 (времени), равный х %
На основании этих данных, составим пропорцию:
1/25 - 100%
1/31 - х%
х=1/31*100 :1/25=100/31 :1/25=100*25/31=2500/31≈80%
Отсюда делаем вывод, что при добавлении на маршрут 6-ти автобусов, интервал ожидания уменьшится на :
100% - 80%=20%
ответ: Б на 20%