Построим высоту СН к стороне АВ. в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН. известно, что ВС = 6, пусть АН = ВН = х, тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2 36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный. угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов. пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора АС^2 = АН^2 + НС^2 4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6; тогда Ас = 2х = 2 корня из 6 ответ: 2 корня из 6
Получатся два прямоугольных треугольника, в каждом из которых данные отрезки d и m будут являться гипотенузами, их проекции d₁ и m₁ катетами, а расстояние между параллельными плоскостями h катет По условию d + m = 40 Пусть х - длина проекции d₁ (40 - m) - длина проекции m₁ Применяем теорему Пифагора для первого треугольника d² - d₁² = h² и для второго m² - m₁² = h² Правые части равны, приравняв левые части, получим уравнение 13² - x² = 37² - (40 - x)² 169 - x² = 1369 - 1600 + 80x - x² 80x = 400 x = 400 : 80 х = 5 см - длина первой проекции 40 - 5 = 35 см - длина второй проекции Ищем разность 35 - 5 = 30 см ответ: 30 см