Из пункта M в пункт N, расстояние между которыми равно 18 км, вышли одновременно два туриста. Один из них прибыл в пункт N на 54 мин позже, чем другой. Найдите скорость каждого туриста, если известно, что скорость одного из них на 1 км/ч меньше, чем скорость другого. скорость одного х, другого (х-1)
18/(х-1 ) - 18/х = 54/60
18х - 18х+18 -0,9х(х-1)=0
-0,9х²+0,9х +18=0 разделим каждый член на (-0,9)
х²-х-20=0
Д=81
х=5 и х=-4 это по смыслу не подходит
ответ:5 км/ч первого туриста, (5-1)=4 км,ч другого туриста
Обозначим искомое число как , по условию . Перенесём единицу в левую часть и разложим разность кубов на множители:
Понятно, что , тогда обе скобки-сомножителя - натуральные числа, большие 1. С другой стороны, произведение представляется в виде двух натуральных сомножителей, больших единицы, единственным (с точностью до перестановок . Поэтому , равны либо и , либо и .
Случай 1. Из первого уравнения следует, что , тогда после подстановки во второе уравнение находим . - действительно простое число, так что нас устраивает.
Случай 2. Тут всё немного сложнее: уравнение на квадратное, а не линейное, как в первом случае. Упростив, получаем уравнение , у которого только один натуральный корень . Подставляем в первое равенство: - простое число, так что и тут нас всё устраивает.
скорость одного х, другого (х-1)
18/(х-1 ) - 18/х = 54/60
18х - 18х+18 -0,9х(х-1)=0
-0,9х²+0,9х +18=0 разделим каждый член на (-0,9)
х²-х-20=0
Д=81
х=5 и х=-4 это по смыслу не подходит
ответ:5 км/ч первого туриста, (5-1)=4 км,ч другого туриста