Это задача на наибольшее(наименьшее) значение функции. План наших действий: 1) ищем производную 2) приравниваем её к нулю, решаем получившееся уравнение 3) смотрим: какие корни попали в указанный промежуток 4) вычисляем значения данной функции в этих корнях и на концах промежутка. 5) пишем ответ начали? 1) y' = 2Сosx + 24/π 2) 2Сosx + 24/π = 0 2Сosx -= - 24/π Сosx = - 12/π нет решений 3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение. 4) а) х = -5π/6 у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13 б) х = 0 у = 0+0 +6 = 6 ответ: max y = 0
Сразу поменяю а на х. Мне так просто привычней. Чтобы значение выражения было целым число, то нужно просто избавится от знаменателя, т.е в числителе вынести за скобки (х+2) и сократить со знаменателем. Сразу заметим, что х не равен -2 Для этого можно было бы попробывать решить уравнение Но с другой стороны можно сразу проверить является ли х=-2 корнем этого уравнения 4-6-2=-4, Значит х=-2 не является корнем этого уравнения. Следовательно нам не удастся преобразовать числитель к виду (х+а)(х+в).
Нам остается последний вариант приравнять х=0, тогда мы получаем
ответ х=0 единственный целое значение, при котором выражение тоже целое число!
1) ищем производную
2) приравниваем её к нулю, решаем получившееся уравнение
3) смотрим: какие корни попали в указанный промежуток
4) вычисляем значения данной функции в этих корнях и на концах промежутка.
5) пишем ответ
начали?
1) y' = 2Сosx + 24/π
2) 2Сosx + 24/π = 0
2Сosx -= - 24/π
Сosx = - 12/π
нет решений
3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение.
4) а) х = -5π/6
у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13
б) х = 0
у = 0+0 +6 = 6
ответ: max y = 0