5 месяцев
Объяснение:
В начале года у Вани и Дани была одинаковая сумма x руб.
Даня в нечётные месяцы прибавлял 50%, а в чётные тратил 20%.
И накопил нужную сумму за 10 месяцев.
В 1 месяц стало 1,5x руб.
Во 2 месяц стало 0,8*1,5x = 1,2x руб
В 3 месяц стало 1,5*0,8*1,5x = 0,8*1,5^2*x руб.
В 4 месяц стало 0,8*0,8*1,5^2*x = 0,8^2*1,5^2*x = (0,8*1,5)^2*x = 1,2^2*x
... И т.д.
В 10 месяц стало (0,8*1,5)^5*x = 1,2^5*x руб.
А Ваня прибавлял каждый месяц 20%.
В 1 месяц стало 1,2x руб.
Во 2 месяц стало 1,2^2*x руб.
... И т.д.
И в конце концов он тоже набрал сумму 1,2^5*x руб.
Очевидно, это произошло через 5 месяцев.
Объяснение:
1) (a-5)(a+3) < (a+1)(a-7)
a^2-5a+3a-15 < a^2+a-7a-7
-2a-15 < - 6a-7
4a < 8
a < 2
Это неравенство верно вовсе не при любых а, а только при а меньше 2.
2) [5x+2] <= 3
Видимо, квадратные скобки это модуль. Неравенство распадается на два:
а) 5x+2 >= - 3
5x >= - 5
x >= - 1
б) 5x+2 <= 3
5x <= 1
x <= 1/5
Целые решения: - 1; 0
3) Пусть одна сторона равна 5 см, а другая больше неё в 4 раза, то есть 20 см.
Тогда периметр равен 2*(5+20) = 2*25 = 50 см.
Если первая сторона меньше 5 см, то вторая меньше 20 см, а периметр меньше 50 см.
Объяснение:
5a−9b+63=0.
9b=5a+63 // : 9
b=(5a+63)/9