Как решать квадратные уравнения? Смотри. Уравнение: ах^2+bx+c=0 называется квадратным. Например, х^2-х-6=0 Решается оно через дискриминант. Точное определение дискриминанта, к сожалению, дать не смогу. Находится он по формуле: b^2-4ac. Найдём дискриминант нашего уравнения: Д=(-1)^2-4*1*(-6)=1+24=25. А теперь нам предстоит найти корни уравнения. В квадратном уравнении, как правило, их 2. Реже - 1 корень, или вовсе корней нет. Всё зависит от дискриминанта. Если он больше нуля - то 2 корня, и формула: х_1,2=(-b(+-)√Д) / 2а. Если дискриминант равен 0, то 1 корень, и формула: х=-b/2a. А если дискриминант меньше нуля - то корней нет. Найдём корни нашего уравнения: Их у нас два, так как дискриминант больше нуля: х_1,2=(1+-√25)/2=(1+-5)/2. Это формула двух корней. А теперь найдём каждый корень по отдельности: х_1=(1+5)/2=6/2=3; х_2=(1-5)/2=-4/2=-2. Корнями будут являться числа 3 и -2. Итак, запишем теперь ответ: х_1=3; х_2=-2.
Всё просто! Со временем ты будешь щелкать эти уравнения, как семечки! ;)
А решение твоих уравнений находится во вложении, только там кратко, не запутайся)
1) Число делителей числа вида 2a, где a нечетное, четно, поскольку оно не является полным квадратом. Полным квадратом не является из-за того, что в разложении на простые множители у числа 2a всего одна 2, которая не может быть представлена как квадрат натурального числа. 2) Раз доказали, что число делителей четно, то разобьем все делители на две группы - в которых числа четные и в которых числа нечетные. Каждому четному числу из первой группы соответствует ровно одно нечетное число из второй группы такое, что их произведение дает число 2aТаких групп n/2, где n-число делителей числа 2a. Поэтому количество четных делителей равно количеству нечетных делителей.
Можно доказать по-другому. Есть у нас число 2a. Выпишем все множители числа a. Множество множителей числа 2a содержит множество множителей числа a. Оставшиеся множители числа 2a - это произведение каждого из множителей числа a на число 2, поскольку каждый из множителей числа a взаимно простой с 2. Множители, в состав которых не входит 2 - нечетные, а в состав которых входит 2 - четные. Раз из одного множества с нечетными элементами можно получить второе множество с четными элементами, причем их количество совпадает, то у числа 2a количество четных делителей равно количеству нечетных делителейВ конце концов, это очевидно
ответ Б ДАВАЙ ОТВЕЧАЙ АААААААА