Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.
Для начала нужно найти критическую точку. находим производную и приравниваем ее к 0 y'=8x-4-3x^2 3x^2-8x+4=0 x=1/3[4+-2] x1=2 x2=2/3 смотрим как производная меняет знак при переходе через критические точки точка будет точкой максимума, если производная меняет знак с + на - такой точкой будет х=2. находим значени y=4x^2-4x-x^3. в точке х=2 4*4-8-8=0 теперь мы должны найти значение на концах отрезка y(0)=0 y(-4)=4*16+16+4^3=144 а теперь ответ, если вопрос стоит найти наибольшее значение функции ответ y(2)=0. если вопрос стоит найти наибольшее значение на отрезке ответ y(-4)=144.
С=
16*15*14 / 1*2*3 =16*5*7=560
Объяснение:
йде скорочення