1) x²-8x+17 Если приравнять это к нулю и найти дескриминант и он будет меньше нуля, то тогда при любых х этот квадратный трехчлен будет больше нуля. x²-8x+17=0 Д=8²-4*17=64-68=-4<0, значит x²-8x+17>0 при любом х. Найдем наименьшее значение x²-8x+17=(х²-2*4*х+16)-16+17=(х-4)²+1. Наименьшее значение будет принимать, если (х-4)²=0, т.е. х=4, а x²-8x+17=4²-8*4+17=1. 2)х²+10х+26=0 Д=100-4*26=100-104=-4<0, значит х²+10х+26>0 при любом х.
х²+10х+26=(х²+2*5*х+25)-25+26=(х+5)²+1. Если х=-5, то х²+10х+26=1 - наименьшее значение.
ответ: c=3, x=-1\2
Объяснение:
Подставляем в уравнение первый корень
2(-3)^2+7(-3)+с=0
18-21+с=0
-3+с=0
с=3
2х^2+7х+3=0
D=49-4*2*3=49-24=25=5
x1=(-7+5)\2*2= -2\4=-1\2
x2=(-7-5)\2*2=-3