у= (-1/3)·x+7
Объяснение:
1) По условию график искомой линейной функции параллелен к функции у= (-1/3)·x+8 и поэтому угловой коэффициент равен к (-1/3). Тогда формула искомой линейной функции имеет вид
у= (-1/3)·x+b, b - пока неизвестно.
2) График искомой линейной функции проходит через точку А(6;5). Если график функции проходит через некоторую точку, то координаты этой точки должны удовлетворить уравнение функции. Поэтому подставляем координаты точки А в уравнение функции и находим b:
5 = (-1/3)·6 + b
5 = - 2 + b
b = 7.
Уравнение искомой функции: у= (-1/3)·x+7.
4x² - 12x + 9 = 0
D = b² - 4ac = 144 - 16×9 = 0
x = -b/2a
x = 12/8
x = 1,5
2) 5x² + 1 - 6x + 4x² = 0
9x² - 6x + 1 = 0
D = b² - 4ac = 36 - 36×1 = 0
x = -b/2a
x = 6/18
x = 1/3
3) x² + 2x - 3 = 0
D = b² -4ac = 4 - 4×(-3) = 26 = 4²
x1 = ( - 2 + 4) / 2 = 1
x2 = ( - 2 - 4) / 2 = - 3
4) x² + 3x -4 = 0
D = b²- 4ac = 9 - 4×(-4) = 25 = 5²
x1 = ( - 3 + 5) / 2 = 1
x2 = ( - 3 - 5) / 2 = - 4
5) x² - 5x + 4 = 0
D = b² - 4ac = 25 - 4×4 = 9 = 3²
x1 =( 5 + 3) / 2 = 4
x2 = ( 5 - 3) / 2 = 1
6) x² - 4x + 3 = 0
D = b - 4ac = 16 - 4×3 = 4 = 2²
x1 = ( 4 + 2) / 2 = 3
x2 = ( 4 - 2) / 2 = 1
7) 2x² + x - 3x - 4 = 0
2x² - 2x - 4 = 0
x² - x - 2 = 0
D = b² - 4ac = 1 - 4×(-2) = 9 = 3²
x1 = ( 1 + 3) / 2 = 2
x2 = ( 1 - 3) / 2 = - 1
8) 2x² - 3x - 4x + 3 = 0
2x² - 7x + 3 = 0
D = b²- 4ac = 49 - 8×3 = 25 = 5²
x1 = ( 7 + 5) / 4 = 3
x2 = ( 7 - 5)/ 4 = 0,5