㏒₀,₂(2/(х-2))≤㏒₀,₂(5-х); ОДЗ неравенства х строго больше 2, но меньше пяти. т.к. основание больше 0, но меньше 1, то меняем знак неравенства по отношению к агрументу. Получим (2/(х-2))≥(5-х); (2-(5-х)(х-2))/(х-2)≥0
(2-(5х-10-х²+2х)/(х-2)≥0; (2-5х+10+х²-2х)/(х-2)≥0; (х²-7х+12)/(х-2)≥0 ; х²-7х+12=0, по Виета х=3, х=4. неравенство при данном ОДЗ равносильно такому (х-4)(х-3)(х-2)≥0; х≠2
это неравенство решим методом интервалов.
___234
- + - +
Решением с учетом ОДЗ будет (2;3]∪[4;5)
a1 = -7, a2 = -5 (a1 и a2 - члены арифметической прогрессии)
Формулы, которые нам понадобятся:
1. - сумма арифметической пр.
2. - формула n-ого члена
3. - разность
Начнём с конца (т.е. с (3))
d = -5 - (-7) = -5 + 7 = 2
Т.к. у нас надо найти сумму ПЯТИДЕСЯТИ членов прогрессии, то n=50
По формуле (2) высчитываем an
an = a1 + (n-1) * d = -7 + (49 * 2) = -7 + 98 = 91
Теперь можно смело находить сумму 50 первых членов арифметической прогрессии (формула (1))
S50 = a1 + an * n / 2 = -7 + 91 * 50 / 2 = 84 * 25 = 2100 (сократили 50 и 2, поэтому на 25)
ответ: