М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dauletkulova
dauletkulova
19.05.2020 00:52 •  Алгебра

Катети прямокутного трикутника дорівнюють 15 см і 36 см.
Визнач довжину медіани цього трикутника.

👇
Ответ:
aretem2002
aretem2002
19.05.2020

9ГШАЦЩАШЦШЩКУГШЩКШЩНЕ

Объяснение:ПЕАПЕА

АПТЬЛОРПАЫПЮ.

4,4(27 оценок)
Открыть все ответы
Ответ:
vo10
vo10
19.05.2020

Пояснение:

Это квадратное уравнение можно решить сразу тремя : через теорему Виета и через Дискриминант (полный и краткий). Покажу все три.

(теорема Виета)

- можно применять, если первый (старший) коэффициент (а) равен единице (1), то есть квадратное уравнение имеет вид:

x² ± px ± q = 0.

x² + 8x + 15 = 0

p = 8; q = 15.

По т. Виета:

x₁ + x₂ = - 8,

x₁ × x₂ = 15.

x₁ = - 5,

x₂ = - 3.

<><><><><><><><><><><><><><><><>

IIа (Дискриминант)

- можно применять к любым полным квадратным уравнениям вида:

ax² ± bx ± c = 0.

x² + 8x + 15 = 0

a = 1; b = 8; c = 15.

D = b² - 4ac = 8² - 4 × 1 × 15 = 64 - 60 = 4 = 2².

D > 0 (значит, уравнение имеет два действ. корня)

x₁‚₂ = \frac{- b ± \sqrt{D}}{2a} = \frac{ - 8±2}{2} = \frac{2( - 4±1)}{2} = - 4±1.

x₁ = - 4 - 1 = - 5,

x₂ = - 4 + 1 = - 3.

<><><><><><><><><><><><><><><><>

IIб ("краткий" Дискриминант)

- можно применять к любым полным квадратным уравнениям вида:

- можно применять к любым полным квадратным уравнениям вида:ax² ± bx ± c = 0,

где b - чётное число (то есть делится на 2 без остатка).

x² + 8x + 15 = 0

a = 1; b = 8; c = 15.

k = b ÷ 2 = 8 ÷ 2 = 4.

D₁ = k² - ac = 4² - 1 × 15 = 16 - 15 = 1.

x₁‚₂ = \frac{- k± \sqrt{D}}{a} = \frac{ - 4±1}{1} = - 4±1.

x₁ = - 4 - 1 = - 5,

x₂ = - 4 + 1 = - 3.

<><><><><><><><><><><><><><><><>

ответ: - 5; - 3.

Удачи Вам! :)

4,6(9 оценок)
Ответ:
milanalive65
milanalive65
19.05.2020

Объяснение:

Находим границы фигуры, приравняв функции:

x² - 4 = -x - 2.

Получаем квадратное уравнение х²+ х - 2 = 0.

Квадратное уравнение, решаем относительно x: Ищем дискриминант:

D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:

x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.

Искомая площадь фигуры равна интегралу:

S= \int\limits^1_{-2} {(-x-2- x^{2} +4} \, dx = \int\limits^1_{-2} {(- x^{2} -x+2)} \, dx =- \frac{x^3}{3}- \frac{ x^{2} }{2}+2x|_{-2}^1S=−2∫1(−x−2−x2+4dx=−2∫1(−x2−x+2)dx=−3x3−2x2+2x∣−21

Подставив пределы, получаем: S =((-1/3)-(1/2)+2*1) - ((8/3)-4/2+2*(-2)) =

= (7/6)-(-10/3) = 9/2 = 4,

4,7(59 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ