М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Bata2003
Bata2003
18.08.2021 15:56 •  Алгебра

1.Сформулируйте(письменно) точное определение арифметической прогрессии.
2. Проверьте, является ли последовательность чисел арифметической прогрессией: (как
установить данный факт?)
а) -2; -4; -6; -8
б) -13; -3; 13; 23..
3.
Арифметическая прогрессия
Пример (приведи пример)
Формула n-го члена (запиши формулу):
Формула для нахождения разности
(запиші формулу):
Формула суммы п первых членов (запишг
формулу):​

👇
Ответ:
Sr529
Sr529
18.08.2021

1) арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, получается прибавлением к предыдущему одного и того же числа.

пример: 1,2,3,410;    3,6,9,12,15

формула n-члена: аn= а1 +d(n-1)

формула для нахождения разности: d=аn+1-аn так как аn+1=аn+d

формула суммы n членов: Sn=(а1 + аn)*n/2 или есть такая формула Sn=2а1+d(n-1)/2*n чаще всего используют первую формулу.

2) -2,-4,-6,-8...  да является -2+(-2)=-4 так же -6+(-2)=-8 ты прибавляешь одно и тоже число

-13,-3,13,23...  нет

4,7(16 оценок)
Открыть все ответы
Ответ:
kamilya14957
kamilya14957
18.08.2021
1- Найти такое положительное число m чтобы данное выражение было квадратом суммы или разности :
1) x² - 6x + m =  x² - 2 * 3 * x + 9 = (х - 3)², m = 9    
2) x² + 16x + m =   x² + 2 * 8 * x + 64 =  (x + 8)², m = 64
  3) x² - mx + 9  = x² - 2 * 3 * x + 9  = (x - 3)², m = 6

2.  Решить уравнение
1) x² - 3x - 10 = 0
а = 1;  b = -3; c = -10
D = b² - 4ac = (-3)² - 4 * 1 * (-10) = 9 + 40 = 49

x1 = - b  + √D    =  - ( - 3) + √49    =   3 +  7   = 5
             2a                   2 * 1                  2

x2 = - b  - √D    =  - ( - 3) - √49    =   3 -  7   = -2
             2a                   2 * 1                2

ответ: -2; 5

 2) 5x² - 7x - 6 = 0
а = 5;  b = -7; c = -6
D = b² - 4ac = (-7)² - 4 * 5 * (-6) = 49 + 120 = 169

x1 = - b  + √D    =  - ( - 7) + √149    =    7 +  13   = 2
             2a                   2 * 5                     10

x2 = - b  - √D    =  - ( - 7) - √149    =    7 -  13   = 0,6
             2a                   2 * 5                    10

ответ: 0,6; 2
4,7(72 оценок)
Ответ:
hjhytu
hjhytu
18.08.2021

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ