Решение Контрольная работа №7 по теме:
«Формулы сокращенного умножения». Вариант 1
1. Преобразуйте в многочлен: а) (x - 5)2; б) (6х + y)2;
в) (3а - 2b) 3; г) (5с - 1) (5с + 1).
2. У выражение: (x - 8)2 - (64 + 3x).
3. Разложите на множители: а) y2 - 144; б) 16х2 - 8ху + у2.
4. Решите уравнение: а) x2 – 49 = 0; б) (5 - a)2 - a (a - 0,5) = 6.
5. Выполните действия: а) (у2 - 2а) (2а + у2); б) (3х2 + х)2.
6. Разложите на множители: а) 4х2y2 - 9а4; б) 25а2 - (а + 3)2.
Решите sin(x+30)+cos(x+60 ) =1+cos2x
cos(x+60°)+sin(x+30°) =1+cos2x ;
cosx*cos60° - sinx*sin60° +sinx*cos30° +cosx*sin30° =1+cos2x ;
(1/2)*cosx - (√3 /2 )sinx + sinx* (√3 /2 ) +cosx*(1/2) =2cos²x ;
cosx = 2cos²x ;
2cosx (cosx -1/2)= 0 ;
cosx =0 ⇒ x =π/2+πn , n ∈Z .
или
cosx -1/2=0 ⇔cosx =1/2 ⇒ x = ±π/3 +2πk , k ∈ Z.
ответ : π/2+πn ,n ∈Z ; ±π/3 +2πk , k ∈ Z.
cos(x+60°)+ cos(90° -(x+30°) ) =1+cos2x ;
cos(x+60°) +cos(60°- x) =1+cos2x ;
2cos60°*cosx =2cos²x ;
cosx = 2cos²x ;
... дальше как в
* * * * * * * P.S. * * * * * * *
cos(α+β) =cosαcosβ - sinαsinβ ;
sin(α+β) =sinαcosβ + cosαsinβ ;
cos2x =cos²x -sin²x = 2cos²x - 1⇒1+cos2x =2cos²x ;.
cos(90° - α) =sinα
cosα+cosβ= 2cos(α+β)/2 *cos(α-β)/2 .