Пусть пропущенное число равно х. 1. Найдем среднее арифметическое: (х+3+4+4+7+15+15+16+24)/9=(x+88)/9 2. Упорядочим имеющиеся числа по возрастанию: 3, 4, 4, 7, 15, 15, 16, 24. Между числами этого упорядоченного ряда где-то нужно вставить число х, тогда по определению, медианой ряда будет число, расположенное ровно посередине, т.е. 5-ое по счету число. Если х<7, то 5-ым числом, т.е. медианой, будет 7, откуда (x+88)/9=7, х=7*9-88=-25<7, т.е. -25 удовлетворяет условию. Если 7≤х≤15, то медианой будет само х, но тогда (x+88)/9=х, откуда х=11, тоже подходит. Если х>15, то медиана ряда равна 15, т.е. (x+88)/9=15, откуда х=9*15-88=47. ответ: подходят три числа: -25; 11; 47.
В решении.
Объяснение:
Решить уравнение:
1) х² - 6х + 8 = 0
D=b²-4ac =36 - 32 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(6-2)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(6+2)/2
х₂=8/2
х₂=4;
2) х² + 4х - 12 = 0
D=b²-4ac =16 + 48 = 64 √D=8
х₁=(-b-√D)/2a
х₁=(-4-8)/2
х₁= -12/2
х₁= -6;
х₂=(-b+√D)/2a
х₂=-4+8)/2
х₂=4/2
х₂=2.
3) х² + х + 2 = 0
D=b²-4ac = 1 - 8 = -7
D < 0
Уравнение не имеет действительных корней.
4) 12х² - 7х + 1 = 0
D=b²-4ac = 49 - 48 = 1 √D=1
х₁=(-b-√D)/2a
х₁=(7-1)/24
х₁=6/24
х₁=1/4
х₂=(-b+√D)/2a
х₂=(7+1)/24
х₂=8/24
х₂=1/3;
5) 2х² - 3х + 7 = 0
D=b²-4ac = 9 - 56 = -47
D < 0
Уравнение не имеет действительных корней.
6) 7х² - 8х + 1 = 0
D=b²-4ac = 64 - 28 = 36 √D=6
х₁=(-b-√D)/2a
х₁=(8-6)/14
х₁=2/14
х₁=1/7;
х₂=(-b+√D)/2a
х₂=(8+6)/14
х₂=14/14
х₂=1.
2. Все квадратные трёхчлены, имеющие корни, можно разложить на множители.
3. х² - 6х + 8 = (х - 2)(х - 4);
х² + 4х - 12 = (х + 6)(х - 2);
12х² - 7х + 1 = 12(х - 1/4)(х - 1/3);
7х² - 8х + 1 = 7(х - 1/7)(х - 1).