М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
slv13
slv13
24.07.2020 15:30 •  Алгебра

12б надо соотнести значения к этим белым пропускам.
что вверх ?
а что вниз?

👇
Открыть все ответы
Ответ:
Babka2002
Babka2002
24.07.2020
1)Чтобы  уравнение имело 2 различных корня, дискриминант должен быть больше 0.
ТОгда a=3; b=-2p; c=6-p.
D=b^2-4ac=(-2p)^2 -4*3*(6-p)=4p^2-72+12p=4p^2+12p-72>0;
p^2+3p-18>0;С метода интервалов получим(p-3)*(p+6)>0;
p< - 6 U p > 3. p∈(-·бесконечность; - 6) U (3; +бесконечность).
2) Чтобы уравнение имело только один корень, дискриминант должен равняться нулю.
Д=0 при р= -6 и при р =3.
3)Чтобы уравнение не имело корней, дискриминант должен быть меньше нуля.
p^2+3p-18 <0;
-6 < p < 3.  p∈ ( -6; 3) 
4) Хотя бы один корень, значит, или один или два корня, Поэтому объединим решения 1-го и 2-го случаев и получим ответ.x∈(-бесконечность ; -6] U [ 3 ; + бесконечность)
4,4(27 оценок)
Ответ:
мик104
мик104
24.07.2020
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\&#10;d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\&#10;0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\&#10;0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\&#10;0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\&#10;0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк
4,7(68 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ