Объяснение:
Построить график функции
у=2×|х|+3
Шаг 1.
Строим график функции
у=|х|
Графиком являются биссектрисы
1 и 2 координатных четвертей.
Весь график расположен в верхней
полуплоскости.
Шаг 2.
Нужно изменить угол наклона вет
вей графика.
Построим и заполним таблицу:
у=2×|х|
х 0 -2 2
у 0 4 4
Строим график фунеции
у=2×|х|.
Шаг 3.
Строим график функции
у=2×|х|+3
График функции у=2×|х| поднимаем
вверх на 3 единицы ( совершаем па
раллельный перенос вдоль положи
тельного направления ОУ на 3ед. от
резка).
Построен искомый график.
ответ: 43
Объяснение:
Пусть одно из чисел равно , тогда второе
.
Пусть:
Тогда:
Где и
взаимнопростые натуральные числа. Для определенности будем считать, что
.
Заметим, что числа простые. Из второго уравнения очевидно, что
не делится на
, то есть
.
Предположим теперь, что , тогда
, но тогда, поскольку сумма двух чисел делится на
, то либо каждое из них делится на
, либо не одно из них не делится на
. Если каждое из них делится на
, то
делится на
, но правая часть второго равенства делится только на первую степень числа
. Если же оба из них не делятся на
, то с учетом того, что
,
не делится на
. То есть мы пришли к противоречию.
Как видим, остается единственный вариант:
27
Объяснение:
Кладываем все числа в ряду. Из суммы, которая получилась мы вычитаем самое большое число из ряда.