и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
1)Решение системы уравнений х= -17
v=7
2)Координаты точки пересечения графиков (7,7; -19,25)
Объяснение:
1. Реши систему уравнений методом подстановки.
−x−2v+1=4
x= −10−v
Х уже выражено во втором уравнении, подставляем выражение в первое уравнение и вычисляем v:
-(−10−v)-2v=3
10+v-2v=3
-v=3-10
-v= -7
v=7
Вычисляем х:
x= −10−v
х= -10-7
х= -17
Решение системы уравнений х= -17
v=7
2. Найди точку пересечения графиков, заданных формулами
15x+2y=77
y= −2,5x без построения.
Первое выражение преобразуем в уравнение функции:
15x+2y=77
2у=77-15х/2
у=38,5-7,5х
Теперь приравняем правые части уравнений (левые равны) и вычислим х:
−2,5x =38,5-7,5х
-2,5х+7,5х=38,5
5х=38,5
х=38,5/5
х=7,7
Вычисляем у:
у=38,5-7,5х
у=38,5-7,5*7,7
у= -19,25
Координаты точки пересечения графиков (7,7; -19,25)