В 1 сосуде 40 кг конц-ции x%. То есть 40*x/100=0,4x кг кислоты. Во 2 сосуде 30 кг конц-ции y%. То есть 30*y/100=0,3y кг кислоты. Если их слить вместе, то будет 0,4x+0,3y кг кислоты на 70 кг раствора, и это 73%. 0,4x+0,3y=70*0,73=51,1 Если же слить равные массы, то получится 72%. Например, сливаем по 100 кг. В 1 будет x кг, во 2 будет y кг. А всего 72% от 200 кг = 144 кг. x+y=144 Получаем систему { 0,4x+0,3y=51,1 { y=144-x Подставляем 0,4x+0,3(144-x)=51,1 0,4x+43,2-0,3x=51,1 0,1x=51,1-43,2=7,9 x=79; y=144-79=65 Во 2 растворе содержится 30*65/100=65*3/10=19,5 кг.
Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
4х-12-9≥3х-12
4х-3х≥-12+12+9
х≥9
х∈[9; +∞)
Наименьшим целым решением данного неравенства является x=9 (так как неравенство нестрогое, то 9 входит в множество решений).