1
1.1818181818... = 1+(18/100+18/10000+18/1000000+... ) выражениее в скобках это сумма бесконечно убывающей геом. прогрессии, найдем элементы этой прогрессии:
b1 = 18/100 q = b2/b1 = (18/10000) / (18/100) = 1/100
(сумма убыв. геом. прогрессии)
S = b1/(1-q) = (18/100) / (1-1/100) = 18/(100* 1-1/100) 18/(100*99/100)
(трехэтажная дробь, 100 сокращается) = 18/99 = 2/11
следовательно 1.18181818 = 1 + 2/11 = 1 цел 2/11
2
[x/(x^2+1)]'
используем две формулы дифференцирования
(u/v)' = (vu'-uv')/v^2 (деление)
и
(x^n)' = n x^(n-1) (степенная)
вычисляем :
[ (x^2+1) * (x)' - x * (x^2+1)' ] / [ (x^2+1)^2 ] (дробь)
(x)' = 1
и
(x^2+1)' = 2x (смотри формулы выше, степенная)
[ (x^2+1) * 1 - x * 2x] / [ (x^2+1)^2 ] =
= [ (x^2+1) - 2x^2] / [ (x^2+1)^2 ] (дробь)
Если есть желание сокращать выражение задание я выполнил, вычислил производную
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.