М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
piiip
piiip
25.05.2023 08:48 •  Алгебра

Составить уравнение окружности касающейся координатных осей и лежащей в 4 четверти. Если ее радиус равен 2

👇
Ответ:
L1mbada
L1mbada
25.05.2023

Окружность касается осей координат и проходит через точку, расположенную в четвертой координатной четверти, значит центр окружности лежит на биссектрисе второго и четвертого координатных углов, т.е на прямой y = – x.

и потому центр окружности имеет координаты (R;–R)

Следовательно, уравнение окружности имеет вид

(x – R)2 + (y –(– R))2 = R2.

Поскольку точка A(4;–2) лежит на окружности, координаты этой точки удовлетворяют полученному уравнению,

т.е.

(4 – R)2 + (–2 + R)2 = R2.

16–8R+R2+4–4R+R2=R2

R2–12R + 20 = 0

D = 144–80 = 64

R = 2 или R = 10

(x - 2) 2 + (y + 2) 2 = 4 или

(x - 10) 2 + (y + 10) 2 = 100

.

Объяснение:


Составить уравнение окружности касающейся координатных осей и лежащей в 4 четверти. Если ее радиус р
4,8(96 оценок)
Открыть все ответы
Ответ:
кио4
кио4
25.05.2023

Відповідь:

Натуральные числа − числа, используемые при счете (перечислении) предметов:  

N

=

{

1

,

2

,

3

,

}

Натуральные числа с включенным нулем − числа, используемые для обозначения количества предметов:  

N

0

=

{

0

,

1

,

2

,

3

,

}

Целые числа − включают в себя натуральные числа, числа противоположные натуральным (т.е. с отрицательным знаком) и ноль.

Целые положительные числа:  

Z

+

=

N

=

{

1

,

2

,

3

,

}

Целые отрицательные числа:  

Z

=

{

,

3

,

2

,

1

}

 

Z

=

Z

{

0

}

Z

+

=

{

,

3

,

2

,

1

,

0

,

1

,

2

,

3

,

}

Рациональные числа − числа, представляемые в виде обыкновенной дроби  

a

/

b

, где  

a

и  

b

− целые числа и  

b

0

.  

Q

=

{

x

x

=

a

/

b

,

a

Z

,

b

Z

,

b

0

}

 

При переводе в десятичную дробь рациональное число представляется конечной или бесконечной периодической дробью.

Иррациональные числа − числа, которые представляются в виде бесконечной непериодической десятичной дроби.  

Действительные (вещественные) числа − объединение рациональных и иррациональных чисел:  

R

 

Комплексные числа  

C

=

{

x

+

i

y

x

R

и

y

R

}

,  

где  

i

− мнимая единица.

N

Z

Q

R

C

 

структура числовых множеств

Пояснення:

Прости я не умею объяснять

4,6(32 оценок)
Ответ:
mама
mама
25.05.2023

Обратную матрицу найдем по формуле:

A^{-1}=\frac{1}{|A|}*\tilde{A^{T}},

где |A| - определитель матрицы, а \tilde{A^{T}} - транспонированная матрица алгебраических дополнений

|A|=\left[\begin{array}{ccc}2&3&-1\\1&-1&3\\3&5&1\end{array}\right]=-2+27-5-3-30-3=-16

Т.к. определитель матрицы не равен 0, то обратная матрица существует.

Находим матрицу миноров. Для каждого элемента матрицы соответствующий ему минор вычисляется по определителю матрицы 2х2, которая получается вычеркиванием соответствующей строки и столбца для этого элемента:

m_{11}=\left[\begin{array}{cc}-1&3\\5&1\end{array}\right]=-1-15=-16\\m_{12}=\left[\begin{array}{cc}1&3\\3&1\end{array}\right]=1-9=-8\\m_{13}=\left[\begin{array}{cc}1&-1\\3&5\end{array}\right]=5+3=8

m_{21}=\left[\begin{array}{cc}3&-1\\5&1\end{array}\right]=3+5=8\\m_{22}=\left[\begin{array}{cc}2&-1\\3&1\end{array}\right]=2+3=5\\m_{23}=\left[\begin{array}{cc}2&3\\3&5\end{array}\right]=10-9=1

m_{31}=\left[\begin{array}{cc}3&-1\\-1&3\end{array}\right]=9-1=8\\m_{32}=\left[\begin{array}{cc}2&-1\\1&3\end{array}\right]=6+1=7\\m_{33}=\left[\begin{array}{cc}2&3\\1&-1\end{array}\right]=-2-3=-5

Получили следующую матрицу миноров:

M=\left[\begin{array}{ccc}-16&-8&8\\8&5&1\\8&7&-5\end{array}\right]

Из матрицы миноров получим матрицу алгебраических дополнений заменой знака на противоположный у элементов матрицы миноров, у которых сумма номеров строк и столбца нечетна:

\tilde{A}=\left[\begin{array}{ccc}-16&8&8\\-8&5&-1\\8&-7&-5\end{array}\right]

Следующим шагом получаем транспонированную матрицу алгебраических дополнений:

\tilde{A^T}=\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]

Обратная матрица:

A^{-1}=-\frac{1}{16}\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]

Проверим, что произведение исходной и обратной матрицы равно единичной:

A*A^{-1}=-\frac{1}{16}\left[\begin{array}{ccc}2&3&-1\\1&-1&3\\3&5&1\end{array}\right]\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]=-\frac{1}{16}*\left[\begin{array}{ccc}-16&0&0\\0&-16&0\\0&0&-16\end{array}\right]=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

4,6(23 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ