Відповідь:
Натуральные числа − числа, используемые при счете (перечислении) предметов:
N
=
{
1
,
2
,
3
,
…
}
Натуральные числа с включенным нулем − числа, используемые для обозначения количества предметов:
N
0
=
{
0
,
1
,
2
,
3
,
…
}
Целые числа − включают в себя натуральные числа, числа противоположные натуральным (т.е. с отрицательным знаком) и ноль.
Целые положительные числа:
Z
+
=
N
=
{
1
,
2
,
3
,
…
}
Целые отрицательные числа:
Z
−
=
{
…
,
−
3
,
−
2
,
−
1
}
Z
=
Z
−
∪
{
0
}
∪
Z
+
=
{
…
,
−
3
,
−
2
,
−
1
,
0
,
1
,
2
,
3
,
…
}
Рациональные числа − числа, представляемые в виде обыкновенной дроби
a
/
b
, где
a
и
b
− целые числа и
b
≠
0
.
Q
=
{
x
∣
x
=
a
/
b
,
a
∈
Z
,
b
∈
Z
,
b
≠
0
}
При переводе в десятичную дробь рациональное число представляется конечной или бесконечной периодической дробью.
Иррациональные числа − числа, которые представляются в виде бесконечной непериодической десятичной дроби.
Действительные (вещественные) числа − объединение рациональных и иррациональных чисел:
R
Комплексные числа
C
=
{
x
+
i
y
∣
x
∈
R
и
y
∈
R
}
,
где
i
− мнимая единица.
N
⊂
Z
⊂
Q
⊂
R
⊂
C
структура числовых множеств
Пояснення:
Прости я не умею объяснять
Обратную матрицу найдем по формуле:
,
где |A| - определитель матрицы, а - транспонированная матрица алгебраических дополнений
Т.к. определитель матрицы не равен 0, то обратная матрица существует.
Находим матрицу миноров. Для каждого элемента матрицы соответствующий ему минор вычисляется по определителю матрицы 2х2, которая получается вычеркиванием соответствующей строки и столбца для этого элемента:
Получили следующую матрицу миноров:
Из матрицы миноров получим матрицу алгебраических дополнений заменой знака на противоположный у элементов матрицы миноров, у которых сумма номеров строк и столбца нечетна:
Следующим шагом получаем транспонированную матрицу алгебраических дополнений:
Обратная матрица:
Проверим, что произведение исходной и обратной матрицы равно единичной:
Окружность касается осей координат и проходит через точку, расположенную в четвертой координатной четверти, значит центр окружности лежит на биссектрисе второго и четвертого координатных углов, т.е на прямой y = – x.
и потому центр окружности имеет координаты (R;–R)
Следовательно, уравнение окружности имеет вид
(x – R)2 + (y –(– R))2 = R2.
Поскольку точка A(4;–2) лежит на окружности, координаты этой точки удовлетворяют полученному уравнению,
т.е.
(4 – R)2 + (–2 + R)2 = R2.
16–8R+R2+4–4R+R2=R2
R2–12R + 20 = 0
D = 144–80 = 64
R = 2 или R = 10
(x - 2) 2 + (y + 2) 2 = 4 или
(x - 10) 2 + (y + 10) 2 = 100
.
Объяснение: