Відповідь:
Натуральные числа − числа, используемые при счете (перечислении) предметов:
N
=
{
1
,
2
,
3
,
…
}
Натуральные числа с включенным нулем − числа, используемые для обозначения количества предметов:
N
0
=
{
0
,
1
,
2
,
3
,
…
}
Целые числа − включают в себя натуральные числа, числа противоположные натуральным (т.е. с отрицательным знаком) и ноль.
Целые положительные числа:
Z
+
=
N
=
{
1
,
2
,
3
,
…
}
Целые отрицательные числа:
Z
−
=
{
…
,
−
3
,
−
2
,
−
1
}
Z
=
Z
−
∪
{
0
}
∪
Z
+
=
{
…
,
−
3
,
−
2
,
−
1
,
0
,
1
,
2
,
3
,
…
}
Рациональные числа − числа, представляемые в виде обыкновенной дроби
a
/
b
, где
a
и
b
− целые числа и
b
≠
0
.
Q
=
{
x
∣
x
=
a
/
b
,
a
∈
Z
,
b
∈
Z
,
b
≠
0
}
При переводе в десятичную дробь рациональное число представляется конечной или бесконечной периодической дробью.
Иррациональные числа − числа, которые представляются в виде бесконечной непериодической десятичной дроби.
Действительные (вещественные) числа − объединение рациональных и иррациональных чисел:
R
Комплексные числа
C
=
{
x
+
i
y
∣
x
∈
R
и
y
∈
R
}
,
где
i
− мнимая единица.
N
⊂
Z
⊂
Q
⊂
R
⊂
C
структура числовых множеств
Пояснення:
Прости я не умею объяснять
Обратную матрицу найдем по формуле:
,
где |A| - определитель матрицы, а
- транспонированная матрица алгебраических дополнений
![|A|=\left[\begin{array}{ccc}2&3&-1\\1&-1&3\\3&5&1\end{array}\right]=-2+27-5-3-30-3=-16](/tpl/images/0977/0676/37fc7.png)
Т.к. определитель матрицы не равен 0, то обратная матрица существует.
Находим матрицу миноров. Для каждого элемента матрицы соответствующий ему минор вычисляется по определителю матрицы 2х2, которая получается вычеркиванием соответствующей строки и столбца для этого элемента:
![m_{11}=\left[\begin{array}{cc}-1&3\\5&1\end{array}\right]=-1-15=-16\\m_{12}=\left[\begin{array}{cc}1&3\\3&1\end{array}\right]=1-9=-8\\m_{13}=\left[\begin{array}{cc}1&-1\\3&5\end{array}\right]=5+3=8](/tpl/images/0977/0676/87821.png)
![m_{21}=\left[\begin{array}{cc}3&-1\\5&1\end{array}\right]=3+5=8\\m_{22}=\left[\begin{array}{cc}2&-1\\3&1\end{array}\right]=2+3=5\\m_{23}=\left[\begin{array}{cc}2&3\\3&5\end{array}\right]=10-9=1](/tpl/images/0977/0676/4f39c.png)
![m_{31}=\left[\begin{array}{cc}3&-1\\-1&3\end{array}\right]=9-1=8\\m_{32}=\left[\begin{array}{cc}2&-1\\1&3\end{array}\right]=6+1=7\\m_{33}=\left[\begin{array}{cc}2&3\\1&-1\end{array}\right]=-2-3=-5](/tpl/images/0977/0676/280fc.png)
Получили следующую матрицу миноров:
![M=\left[\begin{array}{ccc}-16&-8&8\\8&5&1\\8&7&-5\end{array}\right]](/tpl/images/0977/0676/aa9d0.png)
Из матрицы миноров получим матрицу алгебраических дополнений заменой знака на противоположный у элементов матрицы миноров, у которых сумма номеров строк и столбца нечетна:
![\tilde{A}=\left[\begin{array}{ccc}-16&8&8\\-8&5&-1\\8&-7&-5\end{array}\right]](/tpl/images/0977/0676/69926.png)
Следующим шагом получаем транспонированную матрицу алгебраических дополнений:
![\tilde{A^T}=\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]](/tpl/images/0977/0676/ab445.png)
Обратная матрица:
![A^{-1}=-\frac{1}{16}\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]](/tpl/images/0977/0676/543eb.png)
Проверим, что произведение исходной и обратной матрицы равно единичной:
![A*A^{-1}=-\frac{1}{16}\left[\begin{array}{ccc}2&3&-1\\1&-1&3\\3&5&1\end{array}\right]\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]=-\frac{1}{16}*\left[\begin{array}{ccc}-16&0&0\\0&-16&0\\0&0&-16\end{array}\right]=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](/tpl/images/0977/0676/51b23.png)
Окружность касается осей координат и проходит через точку, расположенную в четвертой координатной четверти, значит центр окружности лежит на биссектрисе второго и четвертого координатных углов, т.е на прямой y = – x.
и потому центр окружности имеет координаты (R;–R)
Следовательно, уравнение окружности имеет вид
(x – R)2 + (y –(– R))2 = R2.
Поскольку точка A(4;–2) лежит на окружности, координаты этой точки удовлетворяют полученному уравнению,
т.е.
(4 – R)2 + (–2 + R)2 = R2.
16–8R+R2+4–4R+R2=R2
R2–12R + 20 = 0
D = 144–80 = 64
R = 2 или R = 10
(x - 2) 2 + (y + 2) 2 = 4 или
(x - 10) 2 + (y + 10) 2 = 100
.
Объяснение: