В любом случае мы перемножает количество тех вариантов, которые подходят нам в качестве одной из цифр в числе.
Если имеется в виду такое трехзначное число, в котором не должны повторяться цифры, то тогда надо перемножить 5 на 4 (так как одной из цифр мы уже воспользовались) на 3 (так как уже не можем сюда поставить два числа.
Таким образом получается 5*4*3=60 вариантов.
Если же нам не важно, будут ли цифры в числе повторяться, то просто умножаем 5 на 5 на 5, и получаем:
5*5*5=125 различных вариантов, начиная с 111, заканчивая 555.™
1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
В любом случае мы перемножает количество тех вариантов, которые подходят нам в качестве одной из цифр в числе.
Если имеется в виду такое трехзначное число, в котором не должны повторяться цифры, то тогда надо перемножить 5 на 4 (так как одной из цифр мы уже воспользовались) на 3 (так как уже не можем сюда поставить два числа.
Таким образом получается 5*4*3=60 вариантов.
Если же нам не важно, будут ли цифры в числе повторяться, то просто умножаем 5 на 5 на 5, и получаем:
5*5*5=125 различных вариантов, начиная с 111, заканчивая 555.™
Объяснение: