Замечаем, что перестановки происходят отдельно среди четных чисел и среди нечетных чисел. Поэтому надо ответить на следующий вопрос: есть k предметов, расставленных в каком-то порядке слева-направо и соответствующим образом занумерованных; меняя местами за одну операцию два соседних предмета, нужно расставить их в том же порядке, но справа-налево. Говоря ученым языком, можно сказать, что сначала у нас не было ни одной инверсии (инверсия - это когда предмет с меньшим номером стоит правее предмета с большим номером), а надо сделать максимальное количество инверсий. Меняя местами соседей, мы каждый раз изменяем количество инверсий на 1. Конечно, нам невыгодно уменьшать количество инверсий, а выгодно - увеличивать. Но в каком порядке производить эту операцию - менять местами соседей - абсолютно непринципиально. Поступим, скажем, так. Поменяем сначала местами первый предмет и второй, затем первый и третий, первый и четвертый, и так далее, наконец, первый и последний. Всё. Первый предмет оказался на нужном месте и больше оттуда никуда сдвигаться не будет. Потребовалось нам для этого, естественно, (k-1) операция. Далее будем передвигать второй предмет до тех пор, пока он не поменяется местами с k-м предметом и не окажется рядом с первым, но левее первого. На это потребуется (k-2) операции. И так далее. Всего мы насчитаем операций.
Остается подвести итоги. Окончательный ответ зависит от того, каково n - четное оно или нечетное.
1-й случай: n - четное, n=2m. Это означает, что у нас m четных чисел и m нечетных чисел. Всего операций получится
2-й случай. n - нечетное, n=2m+1. Это означает, что у нас m четных чисел и (m+1) нечетных чисел.Всего операций получится
Решим задачу для n=5, 6, 7, 23.
n=5 - нечетное;
n=6 - четное;
n=7 - нечетное;
n=23 - нечетное;
если a < 0, нет точек пересечения,
если а = 0, бесконечно много точек пересечения,
если а > 0. одна точка пересечения.
Объяснение:
Графический метод.
1) Построим график функции у = |x| (красный график)
Так как |x| = x при x ≥ 0, то для x ≥ 0 графиком является луч с началом в точке (0; 0), биссектриса первой координатной четверти.
Так как |x| = - x при x < 0, то для x < 0 графиком является часть прямой у = - х, расположенная во второй координатной четверти.
2) Построим график функции у = х + а (зеленый график) для различных значений а.
Графиком этой функции является прямая, проходящая под углом 45° к положительному направлению оси Ох, и пересекающая ось Оу в точке (0; а).
Если а < 0, то прямая проходит ниже графика функции у = |x| и не пересекает его.Если а = 0, то прямая проходит через начало координат и совпадает с частью графика функции y = |x|, тогда бесконечно много общих точек.Если а > 0, то прямая пересекает график функции y = |x| в одной точке.Аналитический метод:
1) a < 0
|x| = x + a
Если х ≥ 0, то x = x + a
a = 0
но а < 0, значит точек пересечения нет.
Если х < 0, то - x = x + a
- 2x = a
здесь левая часть положительна, правая - отрицательна, значит нет точек пересечения.
2) а = 0
|x| = x
равенство верно, для любых x ≥ 0.
Бесконечно много общих точек.
3) а > 0
Если x ≥ 0, то x = x + a
a = 0
но а > 0, значит точек пересечения нет.
Если x < 0, то - x = x + a
- 2x = a
обе части положительны, значит для каждого а > 0 найдется значение х, при котором равенство будет верно, следовательно одна точка пересечения.
Максиму у функции в той критической точке, где знак производной слева + (функция возрастает), а справа минус (ф-ция убывает)
fmax при х=-2
Критические точки, в которых производная=0.
Поэтому смотрим нули производной (вторая строчка) и на значения ее справа и слева. Вот при х=4 минус (убывание) меняется на + (возрастание). Там fmin.
А при х=13 ничего. возрастала, замерла и опять возрастает. Как, например, у=х³ при х=0.
ответ: -2.