Величину рождаемости можно представить общим коэффициентом рождаемости:
K_{p.} =\frac{P}{HH} *1000K
p.
=
HH
P
∗1000
где Р - число родившихся, НН - среднегодовая численность популяции.
НН = (Н₁ + Н₂) : 2 , где Н₁ - численность популяции на начало года, Н₂ - численность популяции на конец года.
Так как Н₂ = Н₁ + Р, то
НН = (2*Н₁ + Р) : 2 = Н₁ + Р/2.
Найдем число родившихся: Р = 24741*10:100≈2474 особи
Тогда: НН = 24741 + 2474:2 = 24741 + 1237 = 25978 особей.
Значит:
K_{p.} =\frac{2474}{25978} *1000 = 95,23K
p.
=
25978
2474
∗1000=95,23 (округлено до сотых)
Эта величина показывает число родившихся на каждую тысячу среднегодовой популяции и измеряется в промилле ‰ .
Объяснение:
1) у = Sin x cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞)
Теперь про область значений данной функции. Если вспомнить график (синусоиду) или единичную окружность, то легко увидеть, что для у = Sin x область значений у∈[-1;1]
Но в нашем случае в формуле функции стоит -3. Это значит, что каждое значение "у" изменили на -3
Стало: у∈[ -4; -2]
2) у =2 Sin x cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞)
Теперь про область значений данной функции. Если вспомнить график (синусоиду) , то легко увидеть, что для у = 2Sin x область значений у∈[-2;2].
Но в нашем случае в формуле функции стоит ещё +1. Это значит, что каждое значение "у" увеличили на 1. Получим: у∈[ -1; 3]
3) у = Cos 2x cуществует при любом значении х. Но этот косинус стоит под корнем. А корень существует только тогда, когда подкоренное выражение неотрицательно, т.е. 1 - Cos2x ≥ 0
Теперь надо представить график у = Cos 2x. Эта косинусоида "пляшет" в пределах [-1; 1]
Если от 1 отнимать все значения косинуса, то будут получаться числа ≥ 0
Вывод: х∈(-∞ ; +∞)
Что касается множества значений у, то арифметический квадратный корень из числа- это неотрицательное число.
у∈[ 0; +∞)
Объяснение: правильно