Уравнение y=kx+b называется уравнением прямой с угловым коэффициентом; k - угловой коэффициент, b - величина отрезка, который отсекает прямая на оси Оу, считая от начала координат.
Две прямые параллельные y=k1x+b1,y=k2x+b2, если их угловые коэффициенты равны k1=k2. Таким образом угловой коэффициент искомой прямой равен k=−7. Осталось найти b. По условию задачи, прямая проходит через начало координат, а b - величина отрезка, который отсекает прямая на оси Оу, считая от начала координат, т.е. отрезок b=0. Таким образом получили уравнение прямой y=−7x
ответ : уравнение прямой, проходящей через начало координат, параллельная заданной равно y=−7x.
(x^3+4x^2-9x-36)/(x^3+2x^2-11x-12)
Разложим числитель на множители:
x^3+4x^2-9x-36= (x^3+4x^2)-(9x+36)=x^2(x+4)-9(x+4)=(x^2-9)(x+4)=(x-3)(x+3)(x+4)
Разложим знаменатель на множители:
x^3+2x^2-11x-12
Попробуем подобрать число, при подстановке которого наше выражение равно нулю. Первое такое число "-1". Разделим наш знаменатель на х+1:
x^3+2x^2-11x-12 | x+1
x^3 +x^2 x^2+x-12
x^2 -11x
x^2 + x
-12x-12
-12x-12
0
Мы получили квадратное уравнение х^2+x-12,
корнями которого будут числа "3" и "-4".
Итак, x^3+2x^2-11x-12=(х+1)(х-3)(х+4)
Наша дробь примет вид (x-3)(x+3)(x+4)/(х+1)(х-3)(х+4)=(х+3)/(х+1)
5×4+7b=20
20+7b=20
7b=20-20
7b=0
b=0