В решении.
Объяснение:
Объяснение:
Найдите целые решения неравенства:
-х²+10х-21>0
Приравнять к нулю и решить квадратное уравнение:
-х² + 10х - 21 = 0/-1
х² - 10х + 21 = 0
D=b²-4ac =100 - 84 = 16 √D=4
х₁=(-b-√D)/2a
х₁=(10-4)/2
х₁=6/2
х₁=3;
х₂=(-b+√D)/2a
х₂=(10+4)/2
х₂=14/2
х₂=7.
Уравнение квадратичной функции, график - парабола, ветви направлены вниз, пересекают ось Ох в точках х= 3 и х= 7.
Решение неравенства: х∈(3; 7).
Неравенство строгое, значения х= 3 и х= 7 не входят в решение, поэтому целые решения неравенства: 4; 5; 6.
В решении.
Объяснение:
Решить неравенство методом интервалов:
(х²(3 - х))/(х² - 8х + 16) <= 0
Приравнять к нулю и решить квадратные уравнения:
1) (х²(3 - х))/(х² - 8х + 16) = 0
х²(3 - х) = 0
х² = 0
х₁ = 0;
3 - х = 0
-х = -3
х₂ = 3;
2) х² - 8х + 16 = 0
D=b²-4ac =64 - 64 = 0 √D=0
х₃=(-b±√D)/2a
х₃=(8±0)/2
х₃=4.
Начертить числовую прямую и отметить на ней схематично все вычисленные корни.
Корни из знаменателя будут с незакрашенными кружочками, а в решении под круглой скобкой.
-∞ + 0 + 3 - 4 - +∞
Определить знак самого правого интервала, для этого придать любое значение х больше 4 и подставить в неравенство:
х = 10;
(100(3 - 10)/(100 - 80 + 16) = -700/36 < 0, значит, минус.
Так как неравенство < 0, решениями будут интервалы со знаком минус и х = 0, как одна точка, в фигурных скобках.
Решение неравенства: х∈{0}∪[3; 4)∪(4; +∞).
Неравенство нестрогое, кружочки закрашенные, скобки квадратные.