В решении.
Объяснение:
Из двух городов одновременно навстречу друг другу отправились два
велосипедиста. Проехав некоторую часть пути, первый велосипедист
сделал остановку на 30 минут, а затем продолжил движение до
встречи со вторым велосипедистом. Расстояние между городами
составляет 74 км, скорость первого велосипедиста равна 27 км/ч,
скорость второго 8 км/ч. Определите расстояние от города, из
которого выехал второй велосипедист, до места встречи.
Запишите решение и ответ.
Формула движения: S=v*t
S - расстояние v - скорость t – время
30 минут (остановка) = 0,5 часа.
х - расстояние от города, из которого выехал второй велосипедист, до места встречи.
74 - х - расстояние первого велосипедиста до встречи.
(74 - х)/27 + 0,5 - время первого велосипедиста.
х/8 - время второго велосипедиста.
По условию задачи уравнение:
(74 - х)/27 + 0,5 = х/8
Умножить все части уравнения на 216, чтобы избавиться от дроби:
8(74 - х) + 0,5*216 = 27*х
592 - 8х + 108 = 27х
-8х - 27х = - 700
-35х = -700
х = -700/-35
х = 20 (км) - расстояние от города, из которого выехал второй велосипедист, до места встречи.
Проверка:
54/27 + 0,5 = 20/8
2,5 = 2,5 (часа), верно.
Сколько спаренных и неспаренных электронов содержат эти атомы? Сколько неспаренных электронов содержат ионы Fe2+, Cu2+, As3- ?
Задание №2
Расположите элементы в порядке увеличения:
а) металлических свойств - Se, Li, Br, Rb, Cr, K, Sc
б) электроотрицательности - As, Ge, S, Cl, O, P, Mg
в) радиуса атома - I, Zr, S, As, F, Te, N
Задание №3
Расположите высшие гидроксиды стронция, йода, молибдена, циркония и сурьмы в порядке убывания их кислотных свойств. Объясните причину такого изменения свойств гидроксидов. Приведите пример аналогичного изменения свойств на примере гидроксидов одного металла.
Задание №4
Используя правило Гунда, приведите электронные и