Каждый из юношей может устроиться на любой из
3 + 2 = 5
заводов. То есть для каждого юноши есть 5 вариантов.
всего юношей 3.
По условию задачи на одновременное трудоустройство на один завод запретов нет; следовательно события (работа для каждого юноши) можно считать независимыми
следовательно, общее число вариаций работы для юношей - это перемножение вариантов трудоустройства каждого:
С(общ.юн.) = С(1юн) * С(2юн) * С(3юн) = 5*5*5 = 125 вариантов
Для девушек: аналогичное рассуждение. Заводов
2 + 2 = 4
девушек 2
С(общ.дев.) = С(1дев) * С(2дев) = 4*4= 16 вариантов
Общее число для всех:С(общ) = С(общ.юн) * С(общ.дев) = 125 * 16 = 2000 вариантов.
ОТВЕТ
График
График функции
Точки пересечения: (0;0) и (-2;4)
========= 3 =========
График функции
График функции
Приблизительные точки пересечения, исходя из графиков (-0,33; 0,01); (2,6; 8,8); (-2.2;-3,6)
========= 5 =========
График функции
График функции
Приблизительные точки пересечения, исходя из графиков (0,81; -0.38) и (-4,9; -11.8)