Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
Відповідь:
1 - 1/2 - 1/3 - 1/6 = 0
Пояснення:
Приведем все дроби к общему знаменателю. Наименьшее общее кратное равно произведению простых чисел входящих в разложение на простые числа знаменателей наших дробей.
2^3 × 3 × 5 × 7 = 840
Приведем все дроби к знаменателю 840, а затем умножим выражение на 840 ( при этом знаменатели дробей изчезают ), получаем:
840 + 420 + 280 + 210 + 168 + 140 + 120 + 105 = 0
Поскольку мы имеем дело только со сложением и вычитанием, то для начала мы убираем из выражения слагаемые 210, 168 и 105, так как, оставшиеся в выражении числа делятся без остатка на 20, а эти три числа нельзя свести к числу кратному 20 сложением или вычитанием. В оставшемся выражении заменим знак "плюс" на знак "минус" во всех слагаемых кроме первого. Получаем:
840 - 420 - 280 - 140 - 120 = -120
По условиям задачи выражение должно равнятся нулю, значит число 120 мы тоже убираем.
840 - 420 - 280 - 140 = 0
Вернемся к первоначальному уравнению разделив выражение на 840, получаем:
1 - 1/2 - 1/3 - 1/6 = 0
Проверка.
1 - 3/6 - 2/6 - 1/6 = 0
1 - 6/6 = 1 - 1 = 0