Объяснение:
Войти
АнонимМатематика11 июля 20:08
Найдите промежутки возрастания и убывания, наименьшее значение функции у = x2- 4х - 5
ответ или решение1
Лебедев Яков
Имеем функцию y = x^2 - 4 * x - 5.
Найдем промежутки возрастания, убывания и наименьшее значение функции.
Для начала находим производную функции:
y' = 2 * x - 4.
Промежуток возрастания- промежуток функции, где каждому большему значению аргумента соответствует большее значение функции. На промежутке возрастания производная функции больше нуля.
2 * x - 4 > 0;
x > 2 - промежуток возрастания функции.
Соответственно, для промежутка убывания получаем:
2 * x - 4 < 0;
x < 2 - промежуток убывания функции.
x = 2 - ноль функции. Найдем значение функции от данного аргумента:
y = 4 - 8 - 5 = -9 - наименьшее значение функции.
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
................