А) да, может. Пример (на самом деле, единственный — с точностью до обратной перестановки) : 216, 252, 294, 343 (знаменатель прогрессии равен ⁷⁄₆)
б) нет, не может. Предположим, что такая прогрессия существует. Пусть первый член прогрессии равен A, знаменатель q = m/n — рациональное число, причём натуральные числа m и n взаимно просты (дробь несократима) . Для определённости будем считать прогрессию возрастающей, т. е. m>n (в противном случае достаточно записать члены прогрессии в обратном порядке) .
Тогда прогрессия будет выглядеть так: A, Am/n, Am²/n², Am³/n³, Am⁴/n⁴. Поскольку числа m и n взаимно просты, а последний член прогрессии является натуральным числом, то A делится нацело на n⁴: A = an⁴. Ещё раз запишем все члены прогрессии: an⁴, amn³, am²n², am³n, am⁴. Итак, нам нужно найти такие натуральные числа a, m, n, чтобы { an⁴ ≥ 210, { am⁴ ≤ 350, { m > n. Поскольку a≥1, то m⁴ ≤ 350; m≤4 (5⁴ = 625 — слишком много) . Значит, m/n≥(⁴⁄₃) ⇒ (m/n)⁴ ≥ (²⁵⁶⁄₈₁). Но ²⁵⁶⁄₈₁ > ³⁵⁰⁄₂₁₀ = ⁵⁄₃ (значения можно грубо оценить: в левой стороне неравенства число, большее 2, а в правой — число, меньшее 2).
А (m/n)⁴ ≤ ³⁵⁰⁄₂₁₀. Полученное противоречие доказывает невозможность выполнения условий задачи.
f(4) = -8*4 + 1*4 +11 =
f(4) = -24 + 4 + 11
f(4) = -10
Объяснение:
Вместо x ставим 4