Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
Наименьшее трехзначное число, которое можно поделить на 3 без остатка -102
Далее идет 105, 108, 111, 114, 117, 120 261,264, 267...384, 387...414, 417, 420, 423...504, 507... и так далее.
Следовательно, каждое третье трёхзначное число будет делиться на 3.
Самое последнее трехзначное число, которое делится на 3 без остатка-это 999.
В общей сложности таких чисел всего 300.
Имеются в виду только целые числа , если учитывать ещё и дробные, их будет много больше.
А вообще делятся на 3 те числа, сумма цифр которых кратна трем.
Пример :642 (6+4+2=12)-значит делится на 3.