М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
RFHBYF456
RFHBYF456
02.11.2021 10:14 •  Алгебра

ответ 3 ,но нужно подробное решение​

👇
Ответ:
Xafe456
Xafe456
02.11.2021

ответ: x>78/31

Объяснение:

Я решение прикрепила)


ответ 3 ,но нужно подробное решение​
4,7(29 оценок)
Открыть все ответы
Ответ:
sveta7up
sveta7up
02.11.2021
Найдите значение выражений:
 1)6х^2-6ху-8х+8у при х=-4, у=2
6х^2-6ху-8х+8у =6x(x-y)-8(x-y)=(x-y)(6x-8) при х=-4, у=2
(-4-2)(-24-8)=-6·(-32)=192

2)а^2-аb-5а+5b при а=1/4,b=-1/2

а^2-аb-5а+5b = a(a-b)-5(a-b)=(a-b)(a-5)=при а=1/4,b=-1/2
[1/4-(-1/2)]·(1/4-5)=(3/4)(-19/4)=-57/4

3) b²+bc+ab+ac при a=-1,b=-2,с=-5
b(b+c)+a(b+c)=(b+c)(b+a)=    при a=-1,b=-2,с=-5
(-2-(-5))(-2+(-1))=-15

4)3ху-х^3y^3-6+2x^2y^2 при x=2/3,y=-3/4

3ху-х^3y^3-6+2x^2y^2 =3(xy-2)-x²y²(xy-2)=(3-x²y²)(xy-2)= при x=2/3,y=-3/4

(3-(2/3)²(-3/4)²)((2/3)(-3/4)-2)=2·(-5/2)=-5
4,4(83 оценок)
Ответ:
Miller48
Miller48
02.11.2021

Исследовать функцию f (x) = 11x/(16+x²) и построить ее график.

1. Область определения функции - вся числовая ось, так как знаменатель не может быть равен нулю.

2. Функция f (x) = 11x/(16+x²) непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

 f(–x) = 11*(–x)/(16+(–x)²) = –11x(16+x²) ≠ f(x) 

 f(–x) = 11*(–x)/(16+(–x)²) = –(11x(16+x²)) = –f(x)

Функция является четной. Функция непериодическая.

4. Точки пересечения с осями координат:

Ox: y=0, 11x/(16+x²) = 0 ⇒ x=0. Значит (0;0) - точка пересечения с осью Ox.

 Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

Находим производную заданной функции.
f′(x)=(11⋅x/(16+x²))′=((11⋅x)′⋅(16+x²)−11⋅x⋅(16+x²)′)/(16+x²)²=(11⋅(16+x²)−11⋅x⋅(x²)′)(16+x²)²=((11⋅(16+x²)−22⋅x⋅x)/(16+x²)².
ответ:f′(x)=(11⋅(16+x²)−22⋅x²)(16+x²)² = (11(16-x²))/(16+x²)².
Приравниваем её нулю (достаточно числитель):
11(16-х²) = 0, 16 = х², х = +-4.

 x = 4, x = -4  критические точки.

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимум функции в точке:
x_{2} = -4
Максимум функции в точке: x_{2} = 4.
Где производная положительна - функция возрастает, где отрицательна - там убывает. 
Возрастает на промежутках [-4, 4]
Убывает на промежутках (-oo, -4] U [4, oo)

6. Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции: 
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 
Вторая производная
\frac{22 x}{\left(x^{2} + 16\right)^{2}} \left(\frac{4 x^{2}}{x^{2} + 16} - 3\right) = 0
Решаем это уравнение
Корни этого уравнения
x_{1} = 0
x_{2} = - 4 \sqrt{3}
x_{3} = 4 \sqrt{3}

7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках

[-4*sqrt(3), 0] U [4*sqrt(3), oo)

Выпуклая на промежутках

(-oo, -4*sqrt(3)] U [0, 4*sqrt(3)]

8. Искомый график функции дан в приложении.

4,4(5 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ