1. а) (а – 4)(а + 6)=а²+6а-4а-24=а²+2а-24;
б) (b – 2)(b²+ 3b – 10)=b³+3b²-10b-2b²-6b+20=b³+b²-16b+20;
в) (4х – у)(6х + 4у)=24х²+16ху-6ху-4у²=24х²+10ху-4у²;
4. Докажите тождество
(y – 5)(y + 7) = y(y + 2) – 35.
(y – 5)(y + 7) =у²+7у-5у-35=у²+2у-35= y(y + 2) – 35
из левой части получена правая. Тождество доказано.
5. Пусть ширина х см, тода длина (х+6) см, если ширину увеличить на 5, то она станет равной (х+5) см, если длину увеличить на 2, она станет (х+6+2)=(х+8) /см/, отсюда уравнение (х+5)*(х+8)=75+х*(х+6); х²+8х+5х+40=х²+6х+75; 7х=35, х=5
Значит. ширина равна 5 см, а длина 5+6=11/см/
Итак, прямоугольник. Площадь его равна произведению ширины на длину. Пусть длина будет Х см. Тогда ширина Х-6см, т.к. по условию задачи, ширина на 6 см меньше длины. Значит площадь прямоугольника равна Х * (Х-6) см в квадрате. По учловию площадь равна 40.
Значит, Х* (Х-6) = 40.
Решаем уравнение:
1) Раскрываем скобки ( я буду писать х в квадрате как х2):
х2 - 6х =40.
Переносим 40: х2 - 6х -40 =0.
Получилось простое квадратное уравнение.
По формуле дискриминанта (Д): Д = (б2 - 4ас). В роли б у нас выступает 6 (т.е. 2 член уравнения, который умножается на х), в роли а - первый член, который умножается на х2, в нашем случае это 1, в роли с - третий член, который обычно в виде простого числа, т.е. -40.
Итак, д=(-6)*(-6) - 4* 1 *(- 40) = 36 + 160 = 196
Далее, по формулам, находим корни уравнения:
х = (- б + корень из д)/2а = 6 + 14 / 2 = 20/2 = 10
или х = ( - б - корень из д) / 2а = (6 - 14) / 2 = - 8/2 = -4.
У нас два корня. Но так как мы за букву х брали длину прямоугольника, то она не можнт быть отрицательной. Значит, подходит только первый вариант.
Итак, длина прямоугольника = 10, следовательно ширина равна 10 - 6 = 4.
Одна сторона - а=х+5
Другая сторона -в=х
S=36cм^2
х(х+5)=36
x^2+5x-36=0
D=25-4*(-36)=169=13
Находим корни уравнения, берем только положительный:
х=-5+13/2=4см
а=х+5=4+5=9см