10
Объяснение:
2)Теория вероятности, задача простенькая, не понимаю, почему у Вас возникают проблемы с её решением. Начнем.
Кидаются 2 игральные кости. 1) произведение должно быть 5
Рассмотрим все варианты, чтобы произведение было равна 5
1) 1*5
2) 5*1
Есть 2 таких варианта. Сколько же всего возможных комбинаций может выпасть? При первом броске может выпасть 1, 2, 3, 4, 5, 6 т.е. 6 вариантов.
При втором столько же вариантов - 6. Следовательно всего может быть 36 вариантов выпадаения игральных костей.
2/36 = (примерно) 0.06. или можно записать как 1/18
Произведение 4
1) 1*4
2) 4*1
3) 2*2
3 таких варианта. 3/36 = (примерно) 0.083 или можно записать как 1/12
Произведение 10
1) 2*5
2) 5*2
2 таких варианта. 2/36= (примерно) 0.06. или можно записать как 1/18
Произведение 12
1) 6*2
2) 2*6
3) 3*4
4) 4*3
4 таких варианта. 4/36 = 0.11 или можно записать как 1/9.
Подробнее - на -
x/2 = (-1)^n arcSin(-1/2) + nπ, n ∈Z
x/2 = (-1)^(n+1) *π/6 + nπ, n ∈Z
x = (-1)^(n+1)*π/3 + 2nπ, n ∈Z
б) 2XosxCos4x - Cosx = 0
Cosx(2Cos4x -1) = 0
Cosx = 0 или 2Cos4x -1=0
x = π/2 + πk , k ∈Z Cos4x = 1/2
4x = +-arcCos1/2 + 2πn, n ∈Z
4x = +- π/3 + 2πn, n ∈Z
x = +-π/12 + πn/2 , n ∈Z
в) Sinx +√3Cosx = 0
Sinx = -√3Cos x |²
Sin²x = 3Cosx
1 - Cos²x = 3Cosx
Cos²x +3 Cosx -1 = 0
решаем как квадратное
D = 13
Cosx = (-3+√13)/2 нет решений.
Сosx = (-3 -√13)/2 нет решений