не могу сам сделать у выражение 1) 4(x-3) в квадрате-10x 2) (3a-в)(3a+в) 3) (x-6)в квадрате-(x в квадрате-49) 4) -5x(x-3)-(1+4x) 5) y в квадрате-2y в квадрате-(y-1)в квадрате 6) 3x+1-(a-5)в квадрате квадрат это цифра 2 с верху кто не знает)
1) Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11. Пусть - четырехзначное число, записанное одинаковыми цифрами (х = 1, 2, ...9) Тогда на четных местах: х+х = 2х, на нечетных местах: х+х = 2х. суммы одинаковые, значит делится на 11. 2) ххх - трехзначное число, записаноое одинаковыми цифрами (х = 1, 2,...9). На четных местах: х, на нечетных местах: х+х = 2х. 2х ≠ х, значит число ххх на 11 не делится. Число делится на 37 тогда и только тогда, когда на 37 делится модуль утроенного числа сотен, сложенного с учетверённым числом десятков, за вычетом числа единиц, умноженного на семь. |3x + 4x - 7x| = |0| = 0 - делится на любое число, в т.ч. и на 37.
) Найдите наибольшее значение функции y=x^3-12x+24 на отрезке [-4;0] y'=3x^2-12 y'=0 x=2 x=-2 y''=6x y(2)- минимум y(-2) max y(0)=24 y(-2)=-8+24+24=40 y(-4)=-64+24+48=8 ответ y(-2)=40 2) Найдите наибольшее значение функции y=(4x^2+49)/x на отрезке [-4;-1] y'=4-49/x^2 y'=0 4x^2=49 x^2=49/4 x1=7/2 x2=-7/2 y(-1)=-4-49=-53 y(-3,5)=-14-14=-28 ответ -28 3) Найдите наибольшее значение функции y=(4x-3)^2*(x+6)-9 на отрезке [-6;3] y'=8(x+6)(4x-3)+(4x-3)^2=32x^2-144+168x+16x^2+9-24x=48x^2+144x+135>0 y(3)=81*9-9=720
4) Найдите наименьшее значение функции y=6cosx-7x+8 на отрезке [-п/2;0] y'=-6sinx-7 y(0)=6+8=14 наименьшее y(-pi/2)=0+8+7pi/2>14
Объяснение:
1) 4(x-3)²-10x= 4(x²-6x+9)-10x= 4x²-24x+36-10x= 4x²-34x+36
2) 9a²-b²
3) x²-12x+36-x²+49= 82-12x
4) -5x²+15x-1-4x= -5x²+11x-1
5) y²-2y²-y²+2y-1= -2y²+2y-1
6) 3x+1-a²+10a-25= -a²+10a+3x-24