2.ответ:х -количество облигаций по 2000руб,
у - количество облигаций по 3000руб,
2000х -стоимость х облигаций по 2000руб,
3000у -стоимость у облигаций по 3000руб
Уравнения:
х + у = 8
2000х + 3000у = 19000
Из 1-го уравнения:
у = 8 - х
Подставляем во 2-е уравнение
2000х + 3000(8 - х) = 19000
2000х + 24000 - 3000х = 19000
1000х = 5000
х = 5
у = 8 - х = 8 - 5 = 3
ответ: облигаций по 2000руб было 5, а облигаций по 3000 руб было 3.
1.4х + у = 3 умножаем все уравнение на 6
6х - 2у = 1 умножаем все уравнение на 4
24х + 6у = 18
24х - 8у = 4
вычитаем из первого уравнения второе
0х + 14у = 14
14у = 14
у = 1
4х + 1 = 3
4х = 2
х = 0,5
4.т.к. А(3;8), значит, в этой точке x=3, y=8
т.к. В(-4;1), значит, в этой точке x=-4, y=1
Составляем систему:
Умножаем второе уравнение на (-1):
Складываем:
k=1
Выражаем из второго уравнения b:
b=4k+1
Подставляем k:
b=4*1+1
b=5
Подставляем k и b в уравнение прямой у=kx+b:
y=x+5
Двузначное число, где а десятков и b единиц представим в виде 10a+b (это разложение числа по разрядам). Далее записываем условие задачи: 1) первое предложение
(10a+b):(a+b)=7(ост.3)
10a+b=7(a+b)+3
10a+b=7a+7b+3
3a-6b=3
a-2b=1 - это первое уравнение системы.
2) читаем второе предложение задачи
При перестановке цифр данного двузначного числа получим число 10b+a. Известно, что оно на 36 меньше, чем число 10a+b. Запишем это: 10a+b-36=10b+a
9a-9b=36 |:9
a-b=4 - это второе уравнение системы
Решаем систему:
Итак, искомое двузначное число равно 73.