В решении.
Объяснение:
Задача 1)Найти уравнение прямой, проходящей через k(2;-1) и m(-2;4).
Формула, при которой можно построить уравнение прямой по двум точкам:
(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁)
k(2; -1) и m(-2; 4)
х₁=2 у₁= -1
х₂= -2 у₂= 4
Подставляем данные в формулу:
(х-2)/(-2)-2)=(у-(-1))/(4-(-1))
(х-2)/(-4)=(у+1)/5 перемножаем крест-накрест, как в пропорции:
5(х-2)= (у+1)(-4)
5х-10= -4у -4
4у= -5х+6
у= (-5х+6)/4
у= -1,25х + 1,5 - искомое уравнение.
Задача 2)Найти прямую, проходящую через k(3;-2)перпендикулярно прямой x+2y-4=0.
2у = -х+4
у= -0,5х +2.
Чтобы прямая была перпендикулярна графику заданной функции, коэффициент при х должен быть равным по значению, но с противоположным знаком, значит, k=0,5.
Нужно найти коэффициент b, используя известные координаты точки k (3; -2).
Подставить в уравнение данные значения и вычислить b:
-2 = 0,5*3 + b
-b = 1,5+2
b = -3,5
у = 0,5х-3,5 - искомое уравнение.
х^2-х-2х+2/-(х-2)=0
х(х-1)-2(х-1)/-(х-2)=0
(х-1)*(-1)=0
-х+1=0
-х=-1
х=1, х≠-2
ответ: х=1
2) х+4=5/х х≠0
(х+4)х-5=0
х^2+4х-5=0
х^2+5х-х-5=0
х(х+5)-(х+5)=0
(х+5)(х-1)=0
х+5=0
х-1=0
х=-5
х=1 х≠0
ответ: х1=-5; х2=1