-√14; -3(1); 3,147.
Объяснение:
В данном примере трудность для сравнения представляют только 2 числа: -√14 и -3(1). Какое из них меньше?
Если мы точно не знаем, чему равен √14, то можно сравнить его с ближайшими квадратами чисел, которые мы знаем или легко можем рассчитать.
Ближайшие - это 3^2 = 9 и 4^2 = 16.
14 лежит в интервале от 9 до 16, но 5 единицах от 9 и всего в 2-х единицах от 16, - значит, √14 значительно больше половины интервала числе от 3 до 4, которые возводили в квадрат, т.е. √14 > 3,5.
Можем проверить: 3,5^2 = 12,25, а у нас 14.
Делаем вывод: - √14 на числовой оси лежит левее (то есть меньше) -3(1).
Таким образом, в порядке возрастания числа располагаются в следующем порядке:
-√14; -3(1); 3,147.
1 сплав: 60x; 15x; 25x это я указываю количество каждого вещества.
2 сплав: 0y; 30y; 70y
3 сплав: 45z; 0z; 55z
Общий сплав: 100(x+y+z), меди в нем 15x+30y; по условию медь составляет 20%, то есть одну пятую часть сплава:
15x+30y=20(x+y+z); 3x+6y=4x+4y+4z; x=2y-4z.
Поскольку y>0, можно считать, что y=1; x=2-4z.
Естественные ограничения дают такие условия:
x∈[0;2]; z∈[0;1/2]
Нас спрашивают про содержание алюминия, то есть про возможные значения
(60x+45z)/(100x+100y+100z)=(12x+9z)/20x+20y+20z)=║подставляем y=1; x=2-4z║=(24-48z+9z)/40-80z+20+20z)=
(24 -39z)/(60-60z)=(8-13z)/(20(1-z))=
(13(1-z)-5)/(20(1-z))=13/20+1/(4(z-1)); z∈[0;1/2]
Получившаяся функция на этом промежутке убывает⇒ наибольшее значение принимает в левом конце, наименьшее в правом.
Подставив z=0, получаем 13/20-1/4=8/20=2/5, то есть 40%
Подставив z=1/2, получаем 13/20 - 1/2=3/20, то есть 15%
ответ: процентное содержание алюминия от 15% до 40%