М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
qwem11
qwem11
15.03.2022 04:23 •  Алгебра

1-3/8*3 1/5= Найдите значение выражений

👇
Открыть все ответы
Ответ:
Dima890438
Dima890438
15.03.2022
Решение:
Дано:
b1=x-7
b2=x+5
b3=3x+5
Найдём значение (q), так как согласно определения геометрической прогрессии,:
q=b2/b1
q=b3/b2
Отсюда:
q=(x+5)/(x-7)
q=(3x+5)/(x+5)    приравняем эти выражения:
(х+5)/(х-7)=(3х+5)/(х+5)
(х+5)(х+5)=(х-7)(3х+5)
х^2+10x+25=3x^2-21x+5x-35
x^2+10x+25-3x^2+21x-5x+35=0
-2x^2+26x+60=0  (сократим уравнение на -2)
x^2-13x-30=0
x1,2=(13+-D)/2*1
D=√(13²-4*1*-30)=√(169+120)=√289=17
x1,2=(13+-17)/2
х1=(13+17)/2
х1=15
х2=(13-17)/2=-2

ответ: В данном случае при х1=15 или х2=-2, данная последовательность будет являться геометрической прогрессией.
4,7(75 оценок)
Ответ:
Golpio
Golpio
15.03.2022
Решение
1)найти стационарные точки 
f(x)=x^4-200x^2+56
f`(x) = 4x³ - 400x 
4x³ - 400x = 0
4x*(x² - 100) = 0
4x = 0, x₁ = 0
x² - 100 = 0 
x² = 100
x₂ =  - 10
x₃ = 10
ответ:  x₁ = 0 ; x₂ =  - 10 ; x₃ = 10  - стационарные точки
2) определить интервалы возрастания функций
f(x)=x^3-x^2-x^5+23
1. Находим интервалы возрастания и убывания.
 Первая производная.
f'(x) = -5x⁴ + 3x² - 2x
или
f'(x) = x * (-5x³ + 3x - 2)
Находим нули функции.
 Для этого приравниваем производную к нулю
x * (-5x³ + 3x - 2) = 0
Откуда:
x₁ = - 1
x₂ = 0
(-1; 0)  f'(x) > 0 функция возрастает 
3) определить интервалы убывания функций 
f(x)=x^3-7,5x^2+1
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 15x
или
f'(x) = x*(3x - 15)
Находим нули функции. Для этого приравниваем производную к нулю
x*(3x - 15) = 0
Откуда:
x₁ = 0
x₂ = 5
 (0; 5)  f'(x) < 0 функция убывает
 4) вычислить значение функции в точке максимума
f(x)=x^3-3^2-9x+1
Решение.
Находим первую производную функции:
y' = 3x² - 9
Приравниваем ее к нулю:
3x² - 9 = 0
x² = 3
x₁ = - √3
x₂ = √3
Вычисляем значения функции 
f(- √3) = - 8 + 6√3 точка максимума
f(√3) = - 6√3 - 8 
fmax = - 8 + 6√3
ответ: fmax = - 8 + 6√3
4,6(63 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ