Двузначное число, где а десятков и b единиц представим в виде 10a+b (это разложение числа по разрядам). Далее записываем условие задачи: 1) первое предложение
(10a+b):(a+b)=7(ост.3)
10a+b=7(a+b)+3
10a+b=7a+7b+3
3a-6b=3
a-2b=1 - это первое уравнение системы.
2) читаем второе предложение задачи
При перестановке цифр данного двузначного числа получим число 10b+a. Известно, что оно на 36 меньше, чем число 10a+b. Запишем это: 10a+b-36=10b+a
Ну, просто все: последняя цифра года - 3. Теоретически можно, конечно предположить и 2, но, в этом случае не выполнится второе условие, что последняя цифра в 3 раза больше третьей.
Итак, самая маленькая цифра - третья. Обозначим ее через х Тогда последняя цифра 3х, а вторая цифра 9х х не может быть больше 1, так как иначе 9х будет двузначным числом, а этого не может быть. Таким образом, х = 1; 3х = 3; 9х = 9 И год (первая цифра, разумеется, единица, поскольку в 913 году Венгрии, как страны, еще не было..))) - 1913.
Двузначное число, где а десятков и b единиц представим в виде 10a+b (это разложение числа по разрядам). Далее записываем условие задачи: 1) первое предложение
(10a+b):(a+b)=7(ост.3)
10a+b=7(a+b)+3
10a+b=7a+7b+3
3a-6b=3
a-2b=1 - это первое уравнение системы.
2) читаем второе предложение задачи
При перестановке цифр данного двузначного числа получим число 10b+a. Известно, что оно на 36 меньше, чем число 10a+b. Запишем это: 10a+b-36=10b+a
9a-9b=36 |:9
a-b=4 - это второе уравнение системы
Решаем систему:
Итак, искомое двузначное число равно 73.