(2^2)^(1/3)*2^((2/3)+1)*(2^3)^(1/9) вот
чотобы посмотреть в нормальном виде скопиуй и вставь в поискови нигмы
после преобразуем
2^(2/3)*2^(2/3)*2*2^(1/3) вот
(2^2*2^2*2^3*2)^1/3
(4*4*8*2)^1/3
получим корень кубический из 256
ну или как написала выше девушка
два в степени восемь третьих
но поидее в таком виде нельзя отавлять из-за того что числитель больше знаменателя
ОТВЕТ:два в степени дветерети умножить на четыре , причём 2/3*4 - это степень
В решении.
Объяснение:
Построить график функции
y=2x² - 2
Указать:
1) Область определения функции;
2) Множество значений функции;
3) Те значения x, при которых y > 0.
Приравнять уравнение к нулю и решить как квадратное уравнение.
2x² - 2 = 0
2х² = 2
х² = 2/2
х² = 1
х = ±√1
х = ±1.
График функции - парабола со смещённым центром, пересекает ось Ох в точках (-1; 0) и (1; 0) - нули функции.
Построить график. Придать значения х, подставить в уравнение, вычислить значения у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 16 6 0 -2 0 6 16
1. Указать область определения.
Это проекция графика на ось Ох, значения х, при которых функция существует, обозначение D(f) или D(у).
По графику видно, что область определения ничем не ограничена, х может быть любым.
Запись: D(у) = х∈R (значения х - множество всех действительных чисел).
2) Указать множество значений функции.
Множество значений данной функции может быть ограничено только вершиной параболы, обозначение: E(f) или E(у).
Согласно графика, ордината (значение у) вершины параболы = -2, это значение является ограничением, верх параболы не ограничен, поэтому множество значений функции от у= -2 до + бесконечности.
Запись: E(у) = (-2; +∞).
3) Указать значения x, при которых y > 0.
Согласно графика, значения х, при которых у > 0 (график выше оси Ох) от - бесконечности до -1 и от 1 до + бесконечности.
Запись: у > 0 при х∈(-∞; -1)∪(1; +∞).
1. с) 4 см.
2. d) 14 см.
3. в) 8 см.
Объяснение:
". Основание равнобедренного треугольника равно 10 см., а боковая сторона 8 см. чему равна длина отрезка, соединяющего середины основания и боковой стороны?"
***
АВС - треугольник. АВ=ВС=8 см. MN - средняя линия треугольника MN║AB и равно его половине МН=АВ/2=8/2=4 см.
***
"В квадрате с диагональю 7 см последовательно соединили отрезками середины сторон. Найдите периметр образованного четырехугольника."
***
ABCD - квадрат. АС=7 см - диагональ квадрата.
Соединили середины сторон квадрата. Получили квадрат A1B1C1D1? стороны которого являются средними линиями диагоналей квадрата и равны его половине.
A1B1=B1C1=C1D1=A1D1=AC/2=7/2=3.5 см .
Р=4А1В1=4*3,5=14 см.
***
3. Средняя линия треугольника параллельна основанию и равна его половине.
АВС - равносторонний треугольник. MN =4 см - средняя линия. MN║AC. MN=AC/2. AC=2*MN=8 см .
4 можно представить в виде 2 в квадрате, 8 - в виде 2 в третьей степени. Если число в степени возводится в степень, то эти степени перемножаются.
В итоге получается сумма: 2 в степени две третих + 2 в степени пять третих + 2 в степени одна третья.
2/3 + 5/3 + 1/3 = 8/3
Получается два в степени 8/3.