Пусть x- скорость лодки в стоячей воде y- cкорость течения реки Тогда, x+y -скорость лодки по течению x-y - скорость лодки против течения Тогда, 16/x+y(ч)время за которое проплывает лодка 16 км по течению 16/x-y(ч) 16 км против течения А по условию по течению лодка проплывает на 6 часов быстрее чем против значит можно составить уравнение: 16/x-y -16/x+y =6 Также по условию известно ,что скорость лодки на 2 км больше скорости течения реки Состав им второе уравнение: x-y=2 Пешим полученную систему уравнений : Сперва упрастим первое уравнение избавившись от знаменателя ,получим : 32y=6x^2-6y^2 Затем выразим x из второго уравнения ,получим x=y+2 и подставим в первое: 32y=6*(2+y)^2-6y 32y=24+24y+6y^2-6y^2 8y=24 y=3 X=3+2 X=5 ответ :скорость лодки 5 км/ч скорость реки 3км/ч
1) - две критические точки в области определения R. на промежутках и на промежутке , значит функция убывает на промежутках и возрастает на промежутке . - точка минимума, - точка максимума. - значение минимума функции, - значение максимума функции. 2) - корней нет, - корней нет. итак, критических точек нет, значит в области определения R функция монотонна, т к при любых х, то функция возрастает в области определения R. 3) т к касательная параллельна прямой у=х-3, то угловой коэффициент касательной k=1. - точки, в которых касательная параллельна прямой у=х-3.