(x-3)/х - данная дробь (х-3+1)/(х+1) = (х-2)/(х+1) - новая дробь Так как по условию их разность равна 3/20, то составляем уравнение: (х-2)/(х+1) - (х-3)/ х = 3/20 приводим к общему знаменателю: 20х(х+1) и отбрасываем его, заметив, что х≠0, х≠-1 20х(х-2)-20(х+1)(х-3) = 3х(х+1) 20х²-40х-20х²+40х+60=3х²+3х 3х²+3х-60=0 | :3 х²+х-20=0 Д=1+80=81=9² x(1)=(-1+9)/2=4 => исходная дробь (4-3) / 4 = 1/4 x(2)=(-1-9)/2=-5 => исходная дробь (-5-3) / (-5) = -8/(-5) = 8/5>1 не подходит под условие задачи ответ: 1/4
Предполагаем, что первый автомат за час изготовит 100 деталей, в то время как второй автомат, за час, изготовит 200 деталей.
Среди 100 деталей изготовленных первым автоматом, 100*0,06 = 6 могут быть бракованными, а среди 200 деталей изготовленных вторым автоматом, их может быть 200*0,09 = 18.
Тогда как на конвейр, поступило 100+200 = 300 деталей, среди которых, может быть 18+6 = 24 бракованных. Тогда вероятность того, что мы возьмем бракованную среди всех: 24/300 = 0.08
(х-3+1)/(х+1) = (х-2)/(х+1) - новая дробь
Так как по условию их разность равна 3/20, то составляем уравнение:
(х-2)/(х+1) - (х-3)/ х = 3/20
приводим к общему знаменателю: 20х(х+1) и отбрасываем его, заметив, что х≠0, х≠-1
20х(х-2)-20(х+1)(х-3) = 3х(х+1)
20х²-40х-20х²+40х+60=3х²+3х
3х²+3х-60=0 | :3
х²+х-20=0
Д=1+80=81=9²
x(1)=(-1+9)/2=4 => исходная дробь (4-3) / 4 = 1/4
x(2)=(-1-9)/2=-5 => исходная дробь (-5-3) / (-5) = -8/(-5) = 8/5>1 не подходит под условие задачи
ответ: 1/4