Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:
b1/(1+q)=16/3; b1*q=4
Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8, b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.
ответ:√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В.
1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин).
В момент встречи оба тела вместе проехали весь круг, за время
t = x/(v1+v2) (мин)
При этом 1-ое тело на 100 м больше, чем 2-ое тело.
v1*t = v2*t + 100
v1*x/(v1+v2) = v2*x/(v1+v2) + 100
Умножаем все на (v1+v2)
v1*x = v2*x + 100(v1+v2)
x(v1-v2) = 100(v1+v2)
x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин.
v1*9 = v2*t = v2*x/(v1+v2)
9v1(v1+v2) = v2*x
А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин.
v2*16 = v1*t = v1*x/(v1+v2)
16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными.
{ x = 100(v1+v2)/(v1-v2)
{ 9v1(v1+v2) = v2*x
{ 16v2(v1+v2) = v1*x
Подставляем 1 уравнение во 2 и 3 уравнения
{ 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2)
{ 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2)
Сокращаем (v1+v2)
{ 9v1 = 100v2/(v1-v2)
{ 16v2 = 100v1/(v1-v2)
Получаем
{ 0,09v1 = v2/(v1-v2)
{ 0,16v2 = v1/(v1-v2)
Вычитаем из 2 уравнения 1 уравнение
0,16v2 - 0,09v1 = v1/(v1-v2) - v2/(v1-v2) = (v1-v2)/(v1-v2) = 1
v2 = (0,09v1+1)/0,16
v1-v2 = v1 - (0,09v1+1)/0,16 = (0,16v1-0,09v1-1)/0,16 = (0,07v1-1)/0,16
Подставляем в любое уравнение
0,09v1 = (0,09v1+1)/0,16 : (0,07v1-1)/0,16 = (0,09v1+1)/(0,07v1-1)
0,09v1(0,07v1-1) = (0,09v1+1)
0,0063v1^2 - 0,09v1 - 0,09v1 - 1 = 0
Умножаем все на 1000
6,3v1^2 - 180v1 - 1000 = 0
D/4 = (b/2)^2 - ac = 90^2 - 6,3(-1000) = 8100 + 6300 = 14400 = 120^2
v1 = (-b/2 + √D)/a = (90 + 120)/6,3 = 210/6,3 = 2100/63 = 100/3 м/мин
v2 = (0,09v1+1)/0,16 = (9/3 + 1)/0,16 = 4/0.16 = 400/16 = 25 м/мин
v1-v2 = 100/3 - 25 = (100-75)/3 = 25/3
v1+v2 = 100/3 + 25 = (100+75)/3 = 175/3
Длина трассы
x = 100(v1+v2)/(v1-v2) = 100*175/3 : 25/3 = 100*175/25 = 700 м
ответ: 700 м
Объяснение: