Если у данного уравнения существуют два различных натуральных корня X1 и X2 , то их сумма и произведение - тоже натуральные числа. тогда по теореме Виета:
, где n1 - нат. число. Тогда
Правая часть данного равенства делится на a, значит и левая должна тоже делиться на a. Слева имеем сумму двух слагаемых, чтобы это сумма делилась на a, надо чтобы оба слагаемых делились на a.
3a делится на а, и 5 должно делиться на а. Т.о. а∈{ -5, -1, 1, 5}.
Подставляем поочередно эти значения а в выражение .
Т.о. натуральное значение выражение принимает при а=-5, а=-1 и а=5. По т.Виета Проверим при каких из этих значений сумма корней исходного уравнения будет натуральным числом:
Итак, уравнение может иметь два различных натуральных корня только при a=5. Проверим будут ли этом значении а корни исходного уравнения натуральными числами. При a=5. уравнение примет вид: значит корни будут иррациональными.
1) У числа n три различных простых делителя.
У числа 11n тоже три делителя.
Значит, один из делителей числа n равен 11.
n = 11 · х · у
2) У числа 6n ровно 4 различных простых делителя.
Учитывая, что 6 = 2 · 3
получаем:
6n = 11 · 2 · у · 3
По условию все простые делители должны быть различными.
Значит, у ≠ 2
у ≠ 3
у ≠ 11
С учетом этого наименьшим из множества простых чисел будет
число 5.
Получаем у = 5
Наименьшее число 6n = 2 · 3 · 5 · 11 = 330
3) У числа n обязательно будут делители 5 и 11, а из делителей 2 и 3 выбираем наименьший делитель 2 и получаем:
n = 2 · 5 · 11 = 110
1 + 1 + 0 = 2 - это и есть сумма цифр наименьшего числа n = 110.
ответ: 2